DOI QR코드

DOI QR Code

Topology effects on the LCST of end-capped poly(ethylene glycol)s

  • Kim, Jin Young (Department of Chemistry and Nano Science, Ewha Womans University) ;
  • Moon, Hyo Jung (Department of Chemistry and Nano Science, Ewha Womans University) ;
  • Ko, Du Young (Department of Chemistry and Nano Science, Ewha Womans University) ;
  • Jeong, Byeongmoon (Department of Chemistry and Nano Science, Ewha Womans University)
  • Received : 2015.01.28
  • Accepted : 2015.03.08
  • Published : 2015.03.25

Abstract

Poly(ethylene glycol) end-capped with pentafluorophenyl group(s) in ABA (FP-PEG-FP) and AB (mPEG-FP) types were prepared. Even though they were similar in composition, the lower critical solution temperature (LCST) of FP-PEG-FP was observed at $23^{\circ}C$, whereas that of mPEG-FP was observed at $65^{\circ}C$. To understand the large difference in solution behaviour of the two polymers, UV-VIS spectroscopy, microcalorimetry, 1H-NMR spectroscopy, and dynamic light scattering were used. FP-PEG-FP has two hydrophobic pentafluorophenyl groups at the ends of hydrophilic PEG (1000 Daltons), whereas mPEG-PF has a highly dynamic PEG (550 Daltons) block that are anchored to a hydrophobic pentafluorophenyl group. PF-PEG-PF not only has a smaller conformational degree of freedom than mPEG-PF but also can form extensive intermolecular aggregates, therefore, PF-PEG-PF exhibits a significantly lower LCST than mPEG-PF. This paper suggests that topological control is very important in designing a temperature-sensitive polymer.

Keywords

Acknowledgement

Supported by : National Research Foundation of Korea

References

  1. Barata, J.F.B., Zamaroon, A., Neves, M.G.P.M.S., Faustino, M.A.F., Tome, A.C., Cavaleiro, J.A.S., Roder, B., Juarranz, A. and Sanz-Rodriquez, F. (2015), "Photodynamic effects induced by meso-tris(pentafluorophenyl)corrole and its cyclodextrin conjugates on cytoskeletal components of HeLa cells", European. J. Med. Chem., 92, 135-144. https://doi.org/10.1016/j.ejmech.2014.12.025
  2. Brugger, B. and Ritchering, W. (2008), "Emulsions stabilized by stimuli-sensitive poly(N-isopropylacrylamide)-co-methacrylic acid polymers: microgels versus low molecular weight polymers", Langmuir, 24(15), 7769-7777. https://doi.org/10.1021/la800522h
  3. Busschaert, N., Wenzel, M., Light, M.E., Iglesias-Hernandez, P., Perez-Tomas, R. and Gale, P.A. (2011), "Structure activity relationships in tripodal transmembrane anion", J. Am. Chem. Soc., 133, 14136-14148. https://doi.org/10.1021/ja205884y
  4. Chang, G., Yu, L., Yang, Z. and Ding, J. (2009), "A delicate ionizable-group effect on self-assembly and thermogelling of amphiphilic block copolymers in water", Polymer, 50, 6111-6120. https://doi.org/10.1016/j.polymer.2009.10.036
  5. Chen, L., Ci, T., Li, T., Yu, L. and Ding, J. (2014), "Effects of molecular weight distribution of amphiphilic block copolymers on their solubility, micellization, and temperature-induced sol-gel transition in Water", Macromolecules, 47(17), 5895-5903. https://doi.org/10.1021/ma501110p
  6. Choi, J.Y., Kim, J.Y., Moon, H.J., Park, M.H. and Jeong, B. (2014), "$CO_2$-and $O_2$-sensitive f luorophenyl end-capped poly(ethylene glycol)", Macromol. Rapid Commun., 35(1), 66-70. https://doi.org/10.1002/marc.201300700
  7. Choi, B.G., Song, R., Nam, W. and Jeong, B. (2005), "Iron porphyrins anchored to a thermosensitive polymeric core-shell nanosphere as a thermotropic catalyst", Chem. Commun., 23, 2960-2962.
  8. Creighton, T.E. (1993), Proteins-Structures and molecular properties, W.H. Freeman and Company, New York, USA.
  9. Heskins, M. and Guillet, J.E. (1968), "Solution properties of poly(N-isopropylacrylamide)", J. Macromol. Sci. Chem., 2(8), 1441-1455. https://doi.org/10.1080/10601326808051910
  10. Hiruta, Y., Shimamura, M., Matsuura, M., Maekawa, Y., Funatsu, T., Suzuki, Y., Ayano, E., Okano, T. and Kanazawa, H. (2014), "Temperature-responsive fluorescence polymer probes with accurate thermally controlled cellular uptakes", ACS Macro Lett., 3(3), 281-285. https://doi.org/10.1021/mz5000569
  11. Hoffman, A.S. (2013), "Stimuli-responsive polymers: biomedical applications and challenges for clinical translation", Adv. Drug Deliv. Rev., 65(1), 10-16. https://doi.org/10.1016/j.addr.2012.11.004
  12. Hou, L. and Wu, P. (2014), "LCST transition of PNIPAM-b-PVCL in water: cooperative aggregation of two distinct thermally responsive segments", Soft Matter, 10(20), 3578-3586. https://doi.org/10.1039/c4sm00282b
  13. Jenkins, J., Dmitriev, R.I., Morten, K., McDermott, K.W. and Papkovsky, D.B. (2015), "Oxygen-sensing scaffolds for 3-dimensional cell and tissue culture", Acta biomater., 16, 126-135. https://doi.org/10.1016/j.actbio.2015.01.032
  14. Jiang, X. and Zhao, B. (2008), "Tuning micellization and dissociation transitions of thermo-and pH-sensitive poly (ethylene oxide)-b-poly (methoxydi (ethylene glycol) methacrylate-co-methacrylic acid) in aqueous solution by combining temperature and pH triggers", Macromolecules, 41(23), 9366-9375. https://doi.org/10.1021/ma8018238
  15. Kim, J.Y., Park, M.H., Joo, M.K., Lee, S.Y. and Jeong, B. (2009), "End groups adjust molecular nano-assembly pattern and thermal gelation of polypeptide block copolymer aqueous solution", Macromolecules, 42(8), 3147-3151. https://doi.org/10.1021/ma900341m
  16. Ko, D.Y., Shinde, U.P., Yeon, B. and Jeong, B. (2013), "Recent progress of in situ formed gels for biomedical applications", Prog. Polym. Sci., 38(3-4), 672-701. https://doi.org/10.1016/j.progpolymsci.2012.08.002
  17. Li, T., Ci, T., Chen, L., Yu, L. and Ding, D. (2014), "Salt-induced reentrant hydrogel of poly(ethylene glycol)-poly(lactide-co-glycolide) block copolymers", Polym. Chem., 5(3), 979-991. https://doi.org/10.1039/C3PY01107K
  18. Lopez-Leon, T., Ortega-Vinuesa, J.L., Bastos-Gonzalez, D. and Elaissari, A. (2014), "Thermally sensitive reversible microgels formed by poly (N-isopropylacrylamide) charged chains: a hofmeister effect study", J. Colloid Interface Sci., 426, 300-307. https://doi.org/10.1016/j.jcis.2014.04.020
  19. Moon, H.J., Ko, D.Y., Park, M.H., Joo, M.K. and Jeong, B. (2012), "Temperature-responsive compounds as in situ gelling biomedical materials", Chem. Soc. Rev., 41(14), 4860-4883. https://doi.org/10.1039/c2cs35078e
  20. Nishida, K., Yamato, M., Hayashida, Y., Watanabe, K., Yamamoto, K., Adachi, E., Nagai, S., Kikuchi, A., Maeda, N., Watanabe, H., Okano, T. and Tano, Y. (2004), "Corneal reconstruction with tissue-engineered cell sheets composed of autologous Oral mucosal epithelium", New Eng. J. Med., 351(12), 1187-1196. https://doi.org/10.1056/NEJMoa040455
  21. Nishinaga, T., Miyata, T., Tateno, M., Koizumi, M., Takse, M., Iyoda, M., Kobayashi, N. And Kunugi, Y. (2011), "Synthesis and structural, electronic, optical and FET properties of thiophene-pyrrole mixed hexamers end-capped with phenyl and pentafluorophenyl groups", J. Mater. Chem., 21, 14959-14966. https://doi.org/10.1039/c1jm12966j
  22. Park, M.R., Chun, C., Ahn, S.W., Ki, M.H., Cho, C.S. and Song, S.C. (2010), "Sustained delivery of human growth hormone using a polyelectrolyte complex-loaded thermosensitive polyphosphazene hydrogel", J. Control. Release, 147, 359-367. https://doi.org/10.1016/j.jconrel.2010.07.126
  23. Pelah, A., Seemann, R. and Jovin, T.M. (2007), "Reversible cell deformation by a polymeric actuator", J. Am. Chem. Soc., 129(3), 468-469. https://doi.org/10.1021/ja067171+
  24. Singh, N.K., Nguyen, Q.V., Kim, B.S. and Lee D.S. (2015), "Nanostructure controlled sustained delivery of human growth hormone using injectable, biodegradable, pH/temperature responsive nanobiohybrid hydrogel", Nanoscale, In press.
  25. Tan, D., Zhang, X., Li, J., Tan, H. and Fu, Q. (2012), "Modification of poly(ether urethane) with fluorinated phosphorylcholine polyurethane for improvement of the blood compatibility", J. Biomed. Mater. Res., Part A, 100A, 380-387. https://doi.org/10.1002/jbm.a.33191
  26. Vernon, B., Kim, S.W. and Bae, Y.H. (2000), "Thermoreversible copolymer gels for extracellular matrix", J. Biomed. Mater. Res., 51(1), 69-79. https://doi.org/10.1002/(SICI)1097-4636(200007)51:1<69::AID-JBM10>3.0.CO;2-6
  27. Wang, M., Liu, H., Li, L. and Cheng, Y. (2014), "A fluorinated dendrimer achieves excellent gene transfection efficacy at extremely low nitrogen to phosphorus ratios", Nat. Commun., 5, 3053.
  28. Wijekoon, A., F-Davis, N., Leipzing, N.D. (2013), "Fluorinated methacrylamide chitosan hydrogel systems as adaptable oxygen carriers for wound healing", Acta Biomater., 9, 5653-5664. https://doi.org/10.1016/j.actbio.2012.10.034
  29. Yin, X., Hoffman, A.S. and Stayton, P.S. (2006), "Poly(N-isopropylacrylamide-co-propylacrylic acid) copolymers that respond sharply to temperature and pH", Biomacromolecules, 7(5), 1381-1385. https://doi.org/10.1021/bm0507812
  30. Yoshimura, T., Ohno, A. and Esumi, K. (2006), "Equilibrium and dynamic surface tension properties of partially fluorinated quaternary ammonium salt gemini surfactants", Langmuir, 22, 4643-4648. https://doi.org/10.1021/la0534266
  31. Yu, L., Zhang, H. and Ding, J. (2006), "A subtle end-group effect on macroscopic physical gelation of triblock copolymer aqueous solutions" , Angew. Chem. Int. Ed., 45, 2232-2235. https://doi.org/10.1002/anie.200503575
  32. Yu, L., Chang, G., Zhang, H. and Ding, J. (2006), "Temperature-induced spontaneous sol-gel transitions of poly(D,L-lactic acid-co-glycolic acid)-b-poly(ethylene glycol)-b-poly(D,L-lactic acid-co-glycolic acid) triblock copolymers and their end-capped derivatives", J. Polym. Sci. Polym. Chem., 45, 1122-1133.
  33. Yu, L. and Ding, J. (2008), "Injectable hydrogels as unique biomedical materials", Chem. Soc. Rev., 37, 1473-1481. https://doi.org/10.1039/b713009k
  34. Zhang, H., Yu, L. and Ding, J. (2008), "Roles of hydrophilic homopolymers on the hydrophobic-association-induced physical gelling of amphiphilic block copolymers in water", Macromolecules, 41(17), 6493-6499. https://doi.org/10.1021/ma7026484
  35. Zhang, Y., Furyk, S., Sagle, L.B., Cho, Y., Bergbreiter, D.E. and Cremer, P.S. (2007), "Effects of hofmeister anions on the LCST of PNIPAM as a function of molecular weight", J. Phys. Chem. C., 111(25), 8916-8924. https://doi.org/10.1021/jp0690603