DOI QR코드

DOI QR Code

Quantum modulation of the channel charge and distributed capacitance of double gated nanosize FETs

  • Gasparyan, Ferdinand V. (Department of Semiconductor Physics and Microelectronics, Yerevan State University) ;
  • Aroutiounian, Vladimir M. (Department of Semiconductor Physics and Microelectronics, Yerevan State University)
  • Received : 2015.02.10
  • Accepted : 2015.03.30
  • Published : 2015.03.25

Abstract

The structure represents symmetrical metal electrode (gate 1) - front $SiO_2$ layer - n-Si nanowire FET - buried $SiO_2$ layer - metal electrode (gate 2). At the symmetrical gate voltages high conductive regions near the gate 1 - front $SiO_2$ and gate 2 - buried $SiO_2$ interfaces correspondingly, and low conductive region in the central region of the NW are formed. Possibilities of applications of nanosize FETs at the deep inversion and depletion as a distributed capacitance are demonstrated. Capacity density is an order to ${\sim}{\mu}F/cm^2$. The charge density, it distribution and capacity value in the nanowire can be controlled by a small changes in the gate voltages. at the non-symmetrical gate voltages high conductive regions will move to corresponding interfaces and low conductive region will modulate non-symmetrically. In this case source-drain current of the FET will redistributed and change current way. This gives opportunity to investigate surface and bulk transport processes in the nanosize inversion channel.

Keywords

References

  1. Banerjee, P., Perez, I., Henn-Lecordier, L., Lee, S.B. and Rubloff, G.W. (2009), "Nanotubular metal-insulator-metal capacitor arrays for energy storage", Nat. Nano., 4(5), 292-296. https://doi.org/10.1038/nnano.2009.37
  2. Budnik, M.M. (2009), "Carbon nanotube capacitors", Cutting Edge Nanotechnology, Ed. A. Lazinica, Intech, Vienna, Austria.
  3. Budnik, M.M. and Johnson, E.W. (2009), "A carbon nanotube capacitor", Proceedings of the 2009 IEEE Nanotechnology Materials and Devices Conference (NMDC), Traverse City, MI, USA, June.
  4. Daw, R. and Finkelstein, J. (2006), "Lab on a chip", Nature, 44 (7101), 367-367.
  5. Kemell, M., Ritala, M., Leskela, M., Ossei-Wusu, E., Carstensen, J. and Foll, H. (2007), "Si/$Al_2O_3$/ZnO:Al capacitor arrays formed in electrochemically etched porous Si by atomic layer deposition", Microelectron. Eng., 84(2), 313-318. https://doi.org/10.1016/j.mee.2006.10.085
  6. Kempa, T.J., Tian, B., Kim, D.R., Hu, J., Zheng, X. and Lieber, C.M. (2008), "Single and tandem axial p-i-n nanowire photovoltaic devices", Nano Lett., 8(10), 3456-3460. https://doi.org/10.1021/nl8023438
  7. Klootwijk, J.H., Jinesh, K.B., Dekkers, W., Verhoeven, J.F.C., Van den Heuvel, F.C., Kim, H.D., Blin, D., Verheijen, M.A., Weemaes, R.G.R., Kaiser, M., Ruigrok, J.J.M. and Roozeboom, F. (2008), "Ultrahigh capacitance density for multiple ALD-grown capacitor stacks in 3-D silicon", Elect. Dev. Lett., IEEE, 29(7), 740-742. https://doi.org/10.1109/LED.2008.923205
  8. Liu, W.F., Oh, J.I. and Shen, W.Z. (2011), "Light adsorption mechanism in single c-Si (core)/a-Si (shell) coaxial nanowires", Nanotechnology, 22(12), 125705. https://doi.org/10.1088/0957-4484/22/12/125705
  9. Liu, Z., Zhan, Y., Shi, G., Moldovan, S., Gharbi, M., Song, L., Ma, L., Gao, W., Huang, J., Vajtai, R., Banhart, F., Sharma, P., Lou, J. and Ajayan, P.M. (2012), "Anomalous high capacitance in a coaxial single nanowire capacitor", Nat. Commun., 3(1), 879-885. https://doi.org/10.1038/ncomms1833
  10. Pascual, J.I., Mendez, J., Gomez-Herrero, J., Baro, A.M., Garcia, N. and Thien Binh, V. (1993), "Quantum contact in gold nanostructures by scanning tunneling microscopy", Phys. Rev. Lett., 71(12), 1852-1855. https://doi.org/10.1103/PhysRevLett.71.1852
  11. Pud, S., Gasparyan, F., Petrychuk, M., Li, J., Offenhausser, A. and Vitusevich, S.A. (2014), "Single trap dynamics in electrolyte-gated Si-nanowire field-effect transistors", J. Appl. Phys., 115(23), 233705-11. https://doi.org/10.1063/1.4883757
  12. Sazonova, V., Yaish, Yu., Ustunel, H., Roundy, D., Arias, T.A. and McEuen, P.L. (2004), "A tunable carbon nanotube electromechanical oscillator", Nature, 431(7006), 284-287. https://doi.org/10.1038/nature02905
  13. Shelimov, K.B., Davydov, D.N. and Moskovits, M. (2000), "Template grown high-density nanocapacitor arrays", Appl. Phys. Lett., 77(11), 1722-1724. https://doi.org/10.1063/1.1290598
  14. Steele, G.A., Huttel, A.K., Witkamp, B., Poot, M., Meerwaldt, H.B., Kouwenhoven, L.P. and Van der Zant, H.S.J. (2009), "Strong coupling between single-electron tunneling and nanomechanical motion", Science, 325(5944), 1103-1107. https://doi.org/10.1126/science.1176076
  15. Tian, B., Zheng, X., Kempa, T.J., Fang, Y., Yu, N., Yu, G., Huang, J. and Lieber, Ch.M. (2007), "Coaxial silicon nanowires as solar cells and nanoelectronic power sources", Nature, 449(71), 885-889. https://doi.org/10.1038/nature06181

Cited by

  1. EIS Biosensor for Detection of Low Concentration DNA Molecules vol.55, pp.1, 2015, https://doi.org/10.3103/s1068337220010144
  2. Noises and Signal-to-Noise Ratio of Nanosize EIS and ISFET Biosensors vol.10, pp.1, 2020, https://doi.org/10.4236/ojbiphy.2020.101001