DOI QR코드

DOI QR Code

투과전자현미경분석용 박편 제작 시 집속이온빔에 의한 광물 손상

Damage of Minerals in the Preparation of Thin Slice Using Focused Ion Beam for Transmission Electron Microscopy

  • 정기영 (안동대학교 지구환경과학과)
  • Jeong, Gi Young (Department of Earth and Environmental Sciences, Andong National University)
  • 투고 : 2015.11.23
  • 심사 : 2015.12.16
  • 발행 : 2015.12.30

초록

집속이온빔(FIB, focused ion beam)법은 광물 및 지질시료의 분석 대상 위치로부터 투과전자현미경(TEM, transmission electron microscope) 관찰을 위한 박편을 정밀하게 제작할 수 있는 방법으로 널리 보급되고 있다. 그러나 박편 제작과정에서 Ga 이온빔에 의한 구조 손상이나 인위적 효과들이 발생하여 전자빔에 의한 손상과 함께 TEM 분석에서의 난점들 중 하나이다. 광물 시료 FIB 박편의 TEM 관찰에서 석영과 장석의 비정질화, 커튼 효과, Ga 오염 등이 확인되었으며, 특히 입자 경계 부근이나 두께가 얇은 곳에서 이들 현상이 보다 뚜렷하다. 박편 제작 시의 가속전압 및 전류 조정 등의 분석절차 개선으로 이온빔 손상을 줄일 수 있으나, 어느 정도의 손상이나 오염은 피할 수 없으므로 TEM 박편 관찰과 해석에서 유의하여야 한다.

Focused ion beam (FIB) technique is widely used in the precise preparation of thin slices for the transmission electron microscopic (TEM) observation of target area of the minerals and geological materials. However, structural damages and artifacts by the Ga ion beam as well as electron beam damage are major difficulties in the TEM analyses. TEM analyses of the mineral samples showed the amorphization of quartz and feldspar, curtain effect, and Ga contamination, particularly near the grain edges and relatively thin regions. Although the ion beam damage could be much reduced by the improved procedures including the adjustment of the acceleration voltage and current, the ion beam damage and contamination are likely inevitable, thus requiring careful interpretation of the micro-structural and micro-chemical features observed by TEM analyses.

키워드

참고문헌

  1. Giannuzzi, L.A. and Stevie, F.A. (1999) A review of focused ion beam milling techniques for TEM specimen preparation. Micron, 30, 197-204. https://doi.org/10.1016/S0968-4328(99)00005-0
  2. Giannuzzi, L.A. (2005) Introduction to focuse dion beams, Instrumentation, theory, techniques, and practice. Springer, 358 p.
  3. Heaney, P.J., Vicenzi, E.P., Giannuzzi, L.A., and Livi, K.J.T. (2001), Focused ion beam milling: A method of site-specific sample extraction for microanalysis of Earth and planetary materials. Amer. Mineral., 86, 1094-1099. https://doi.org/10.2138/am-2001-8-917
  4. Ishitani, T., Umemura, K., Ohnishi, T., Yaguchi, T., and Kamino, T. (2004) Improvements in performance of focused ion beam cross sectioning: aspects of ion-sample interaction. J. Electron Microsc., 53, 443-449. https://doi.org/10.1093/jmicro/dfh078
  5. Jeong, G.Y. and Achterberg, E.P. (2014) Chemistry and mineralogy of clay minerals in Asian and Saharan dusts and the implications for iron supply to the oceans. Atmos. Chem. Phys., 14, 12415-12428, 2014, doi:10.5194/acp-14-12415-2014.
  6. Jeong, G.Y. and Nousiainen, T. (2014) TEM analysis of the internal structures and mineralogy of Asian dust particles and the implications for optical modeling. Atmos. Chem. Phys., 14, 7233-7254, doi:10.5194/acp-14-7233-2014.
  7. Jeong, G.Y. and Sohn, Y.K. (2011) Microtextures, microchemistry, and mineralogy of basaltic glass alteration, Jeju Island, Korea, with implications for elemental behavior. Amer. Mineral., 96, 1129-1147. https://doi.org/10.2138/am.2011.3677
  8. Jeong, G.Y., Kim, J.Y., Seo, J., Kim, G.M., Jin, H.C., and Chun, Y. (2014) Long-range transport of giant particles in Asian dust identified by physical, mineralogical, and meteorological analysis. Atmos. Chem. Phys., 14, 505-521, doi:10.5194/acp-14-505-2014.
  9. Kato, N.I. (2004) Reducing focused ion beam damage to transmission electron microscopy samples. J. Electron Microsc., 53, 451-458. https://doi.org/10.1093/jmicro/dfh080
  10. Mayer, J., Giannuzzi, L.A., Kamino, T., and Michael, J. (2007) TEM sample preparation and FIB-induced damage. MRS Bull., 32, 400-407. https://doi.org/10.1557/mrs2007.63