DOI QR코드

DOI QR Code

The Effect of Dissolved Cement Powder on Carassius auratus

용해된 시멘트 분말이 붕어에 미치는 영향

  • Shin, Myung-Ja (Deptpartment of Biological Science, Andong National University) ;
  • Lee, Jong-Eun (Deptpartment of Biological Science, Andong National University) ;
  • Seo, Eul-Won (Deptpartment of Biological Science, Andong National University)
  • 신명자 (안동대학교 자연과학대학 생명과학과) ;
  • 이종은 (안동대학교 자연과학대학 생명과학과) ;
  • 서을원 (안동대학교 자연과학대학 생명과학과)
  • Received : 2014.11.28
  • Accepted : 2015.01.19
  • Published : 2015.03.31

Abstract

In this study, we studied the effect of dissolved cement powder on Carassius auratus by analysis of the morphophysiological changes. The gill exposed to dissolved cement powder showed the thickened primary lamellae and the activity of chloride cells and mucous cells was also significantly increased and the proliferation, separation and clubbing of gill filament was observed in the secondary lamellae. In the kidney tissue, the space in Bowman's capsule was widen and the arrangement of dermis was irregular due to the thinned epidermis in the integument tissue. The activities of antioxidant enzymes and LDH tended to increase with the duration of cement exposure. It was confirmed that the up-regulated proteins were identified as involved in glycolysis and energy metabolism and down-regulated proteins were myofibrillar proteins which were involved in muscle contraction by the cement exposure to the integument. With these results, dissolved cement powder was thought to be a big threat to the survival of the fish because it causes the morphological changes and weakens the physiological activity in C. auratus tissues.

본 연구는 시멘트 노출에 따른 어류 조직의 형태 생리적 변화를 분석하여 용해된 시멘트 분말이 어류에 미치는 영향을 조사하고자 하였다. 용해된 시멘트 분말에 노출된 아가미는 일차새변의 두께가 두꺼워지고, 염세포와 점액세포도 두드러지게 활성이 증가되고 있으며, 이차새변의 새엽에서는 상피세포의 증식과 박리 및 곤봉화 현상도 관찰되었다. 신장 조직에서는 보우만 주머니 공간이 넓게 관찰되었고, 표피 조직은 표피층의 두께가 감소하며 진피층의 배열이 불규칙해지는 것으로 관찰되었다. 항산화효소와 LDH의 활성은 조직 및 노출 기간에 따라 활성에 차이가 있는 것으로 나타났다. 표피 조직에서 용해된 시멘트 분말에 의해 발현이 증가되는 단백질은 해당과정과 에너지 대사과정에 관여하는 단백질로 확인되었고 발현이 저하된 단백질들은 근수축에 관여하는 근섬유 구성 단백질로 조사되었다. 이러한 결과로 보아 용해된 시멘트 분말은 붕어 조직의 형태적 변형과 생리적 기능의 약화를 초래하여 어류의 생존에 커다란 위협이 될 요인으로 작용할 수 있을 것으로 사료된다.

Keywords

References

  1. Aebi H. 1984. Catalase in vitro. pp.121-126. In Methods in Enzymology. Academic Press. New York.
  2. Alscher RG and JL Hess. 1993. Antioxidants in higher plants. pp. 31-58, CRC Press. Boca Raton, FL.
  3. APHA, AWWA, WPCF. 1985. Standard methods for the examination of water and wastewater. APHA. Washington DC.
  4. Barton BA and GK Iwama. 1991. Physiological changes in fish from stress in aquaculture with emphasis on the responses and effects of corticosteroids. Ann. Rev. Fish Dis. 1:3-26. https://doi.org/10.1016/0959-8030(91)90019-G
  5. Begum G and S Vijayraghavan. 1999. Effect of acute exposure of the oraganophosphate insecticide rogor on some biochemical aspects of Clarias batrachus (Linnaeus). Environ. Res. Sec. 80A:80-83.
  6. Boyd CE. 1998. Water quality for pond aquaculture. Research and development series No. 43. International center for aquaculture and aquatic environments. Alabama Argicultural Experiment Station. Auburn University. Alabama.
  7. Buono RJ and KL Robyn. 1999. Hypoxic repression of lactate dehydrogenase-B in retina. Exp. Eye Res. 69:685-693. https://doi.org/10.1006/exer.1999.0745
  8. Chrousos GP. 1998. Stressors, stress, and neuroendocrine integration of the adaptive response. Ann. N.Y. Acad. Sci. 851:311-335. https://doi.org/10.1111/j.1749-6632.1998.tb09006.x
  9. Dalton DA, L Langeberg and NC Treneman. 1993. Correlations between the ascorbate-glutathione pathway and effectiveness in legume root nodules. Physiol. Plant. 87:365-370. https://doi.org/10.1111/j.1399-3054.1993.tb01743.x
  10. Davis BJ. 1964. Disc electrophoresis-II. Method and application to human serum proteins. Ann. N.Y. Acad. Sci. 121: 404-427.
  11. Evans DH. 1987. The fish gill: Site of action and model for toxic effects of environmental pollutants. Environ. Health Perspect. 71:47-58. https://doi.org/10.1289/ehp.877147
  12. Flohe L, A Wolfgang and WA Gunzler. 1984. Assay of glutathione peroxidase. pp.114-130. In Methods in enzymatic analysis. Academic Press. New York.
  13. Gill TS, JC Pant and H Tewari. 1989. Cadmium nephropathy in a freshwater fish, Puntius conchonius Hamilton. Ecotoxicol. Environ. Safe. 18:165-172. https://doi.org/10.1016/0147-6513(89)90077-8
  14. Hosoya S, SC Johnson, GK Iwama, AK Gamperl and LOB Afonso. 2007. Changes in free and total plasma cortisol levels in juvenile haddock (Melanogrammus aeglefinus) exposed to long-term handling stress. Comp. Biochem. Physiol. 146A:78-86.
  15. Jee JH, F Masroor and JC Kang. 2005. Responses of cypermethrin-induced stress in haematological parameters of Korean rockfish, Sebastes schlegeli (Hilgendorf). Aquacul. Res. 36:898-905. https://doi.org/10.1111/j.1365-2109.2005.01299.x
  16. Kim JK, YN Park, WK Kim, JW Kim, SK Lee and KG Choi. 2010. Molecular/ biochemical biomarkers for exposure to hazardous chemicals in the water environment and their application to freshwater fish. J. Env. Hlth. Sci. 36:418-434.
  17. Lee CK and IY Choo. 1973. Studies on the effects of copper on the lactate dehydrogenase and esterase isozymes in various tissues of Carassius carassius. Korean J. Zool. 2:79-96.
  18. Lee JY and JW Hur. 2005. Acute toxicity of cement on mortality of pond smelt (Hypomesus olidus). Korean J. Environ. Biol. 23:89-92.
  19. Mallatt J. 1985. Fish gill structural changes induced by toxicants and other irritants: a statistical review. Can. J. Fish Aqu. Sci. 42:630-648. https://doi.org/10.1139/f85-083
  20. McCord JM and I Fridovich. 1969. Superoxide dismutase an enzymic function erythrocuprotein (Hemocuprotein). J. Biol. Chem. 244:6649-6055.
  21. Mommsen TP, MM Vijayan and TW Moon. 1999. Cortisol in teleosts: dynamics, mechanisms of action, and metabolic regulation. Revi. Fish Biol. Fish. 9:211-268. https://doi.org/10.1023/A:1008924418720
  22. Naaby-Hansen S, MD Waterfield and R Cramer. 2001. Proteomics-post-genomic cartography to understand gene function. Trends Pharmacol. Sci. 22:376-384. https://doi.org/10.1016/S0165-6147(00)01663-1
  23. Reid SG, NJ Bernier and SF Perry. 1998. The adrenergic stress response in fish: Control of catecholamine storage and release. Comp. Biochem. Physiol. 120C:1-27.
  24. Roy RN, LN Roy, KM Vogel, C Porter-Moore, T Pearson, CE Good, FJ Millero and DM Campbell. 1993. The dissociation constants of carbonic acid in seawater at salinities 5 to 45 and temperatures 0 to $45^{\circ}C$. Mar. Chem. 44:249-267. https://doi.org/10.1016/0304-4203(93)90207-5
  25. Schnaitman C, VG Erwin and JW Greenawalt. 1967. The submitochondrial localization of monoamine oxidase. An enzymatic marker for the outer membrane of rat liver mitochondria J. Cell Biol. 32:719-735. https://doi.org/10.1083/jcb.32.3.719
  26. Schwaiger J, OH Spieser, C Bauer, H Ferling, U Mallow, W Kalbfus and RD Negele. 2000. Chronic toxicity of nonylphenol and ethinylestradiol: haematological and histopathological effects in juvenile common carp, Cyprinus carpio. Aquat. Toxicol. 51:69-78. https://doi.org/10.1016/S0166-445X(00)00098-9
  27. Whitt GS. 1970. Developmental genetics of the lactate dehydrogenase isozymes of fish. J. Exp. Zool. 175:1-35. https://doi.org/10.1002/jez.1401750102