DOI QR코드

DOI QR Code

Effects of Jeju Citrus unshiu Peel Extracts Before and After Bioconversion with Cytolase on Anti-Inflammatory Activity in RAW264.7 Cells

면역세포에서 Bioconversion 전후 제주 감귤 과피 추출물의 항염증 효과

  • Received : 2014.09.12
  • Accepted : 2015.01.29
  • Published : 2015.03.31

Abstract

Citrus and its peels, which are by-products from juice and/or jam processing, have long been used in Asian folk medicine. Citrus peels show an abundant variety of flavanones, and these flavanones have glycone and aglycone forms. Aglycones are more potent than glycones with a variety of physiological functions since aglycone absorption is more efficient than glycones. Bioconversion with cytolase converted narirutin and naringin into naringenin and hesperidin into hesperetin. Therefore, this study aimed to investigate the anti-oxidant and anti-inflammatory effects of bioconversion of Citrus unshiu (CU) peel extracts with cytolase (CU-C) in RAW264.7 cells. HPLC chromatograms showed that CU and CU-C had 23.42% and 29.39% total flavonoids, respectively. There was substantial bioconversion of narirutin to naringenin and of hesperidin to hesperetin. All citrus peel extracts showed DPPH scavenging activities in a dose-dependent manner, and CU-C was more potent than intact CU. RAW264.7 cells were pre-treated with $0{\sim}500{\mu}g/mL$ of citrus peel extracts for 4 h and then stimulated by $1{\mu}g/mL$ of lipopolysaccharide (LPS) for 8 h. All citrus peel extracts showed decreased mRNA levels and protein expression of LPS-induced inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) in a dose-dependent manner. Especially, CU-C markedly inhibited mRNA and protein expression of iNOS and COX-2 compared to intact citrus peel extracts. All citrus peel extracts showed decreased NO production by iNOS activity. This result suggests that bioconversion of citrus peel extracts with cytolase may provide potent functional food materials for prevention of chronic diseases attributable to oxidation and inflammation by boosting the anti-inflammatory effects of citrus peels.

감귤류와 감귤류의 과피는 오랜 기간 동양의학의 약재로 사용되어 왔고 최근에는 생과와 주스로 많이 소비되고 있다. 하지만 감귤류 가공 공정 시 많은 과피 부산물이 발생하므로 활용방안이 필요하다. 감귤류의 과피에는 플라바논(flavanone)이 풍부하며 이 플라바논의 형태 중 배당체보다 비배당체의 체내 흡수가 더 효과적이므로 비배당체가 생리적 효과가 더 뛰어나다. Bioconversion(물질전환)은 cytolase에 의해 narirutin과 naringin은 naringenin으로, hesperidin은 hesperetin으로 각각 전환되며, 본 연구는 감귤의 과피에 다량 존재하는 플라바논을 물질전환 한 뒤 면역세포에서 항산화 및 항염증 효과를 확인하였다. 물질전환 후에 감귤 과피 추출물의 전자공여능이 농도 의존적으로 높아지는 것을 확인하였고, 면역세포인 RAW264.7에 200, $500{\mu}g/mL$ 감귤 bioconversion 전(CU) 후(CU-C) 과피 추출물을 4시간 동안 처리한 후 LPS($1{\mu}g/mL$, 8시간)를 처리하였다. 염증 관련 효소인 iNOS와 COX-2의 mRNA와 단백질 발현을 확인한 결과 물질전환과 관계없이 감귤 과피 추출물이 LPS에 의해 유도된 iNOS와 COX-2의 mRNA와 단백질 발현을 농도 의존적으로 감소시켰지만 물질전환 전보다 후 추출물의 억제 효과가 더 높았다. iNOS에 의해 생성되는 NO 역시 감귤 과피 추출물이 LPS에 의해 유도된 NO 생성을 억제시켰다. 본 연구 결과는 감귤 과피 추출물이 항산화와 항염증 생리활성을 보였지만 cytolase를 이용하여 물질전환 한 감귤 과피 추출물이 물질전환 전보다 이러한 생리활성이 강화됨을 보임으로써 향후 감귤류 부산물로 폐기되어온 감귤류 과피가 산화적 스트레스와 염증반응에 기인하는 만성질환을 위한 기능성 소재로 활용이 가능할 것으로 기대된다. 감귤 과피 추출물의 in vitro 상에서 검증된 항염증 효능이 향후에 in vivo 상에서 여러 염증 조직에 미치는 영향에 대한 추가 검증이 필요하다고 사료된다.

Keywords

References

  1. Himaya SW, Ryu B, Qian ZJ, Kim SK. 2012. Paeonol from Hippocampus kuda Bleeler suppressed the neuro-inflammatory responses in vitro via NF-${\kappa}B$ and MAPK signaling pathways. Toxicol in Vitro 26: 878-887. https://doi.org/10.1016/j.tiv.2012.04.022
  2. Trowbridge HO, Emling RC, Fornatora M. 1997. Inflammation. A review of the process. Implant Dent 6: 238-278.
  3. Zamora R, Vodovotz Y, Billiar TR. 2000. Inducible nitric oxide synthase and inflammatory diseases. Mol Med 6: 347-373.
  4. Tracey KJ. 2002. The inflammatory reflex. Nature 420: 853-859. https://doi.org/10.1038/nature01321
  5. Fan GW, Zhang Y, Jiang X, Zhu Y, Wang B, Su L, Cao W, Zhang H, Gao X. 2013. Anti-inflammatory activity of baicalein in LPS-stimulated RAW264.7 macrophages via estrogen receptor and NF-${\kappa}B$-dependent pathways. Inflammation 36: 1584-1591. https://doi.org/10.1007/s10753-013-9703-2
  6. Hu W, Yang X, Zhe C, Zhang Q, Sun L, Cao K. 2011. Puerarin inhibits iNOS, COX-2 and CRP expression via suppression of NF-${\kappa}B$ activation in LPS-induced RAW264.7 macrophage cells. Pharmacol Rep 63: 781-789. https://doi.org/10.1016/S1734-1140(11)70590-4
  7. Kang SI, Shin HS, Kim HM, Hong YS, Yoon SA, Kang SW, Kim JH, Kim MH, Ko HC, Kim SJ. 2012. Immature Citrus sunki peel extract exhibits antiobesity effects by ${\beta}$-oxidation and lipolysis in high-fat diet-induced obese mice. Biol Pharm Bull 35: 223-230. https://doi.org/10.1248/bpb.35.223
  8. Ejaz S, Ejaz A, Matsuda K, Lim CW. 2006. Limonoids as cancer chemopreventive agents. J Sci Food Agric 86: 339-345. https://doi.org/10.1002/jsfa.2396
  9. Tripoli E, Guardia ML, Giammanco S, Majo DD, Giammanco M. 2007. Citrus flavonoids: Molecular structure, biological activity and nutritional properties: A review. Food Chem 104: 466-479. https://doi.org/10.1016/j.foodchem.2006.11.054
  10. Tsai SH, Lin-Shiau SY, Lin JK. 1999. Suppression of nitric oxide synthase and the down-regulation of the activation of NFkappaB in macrophages by resveratrol. Br J Pharmacol 126: 673-680. https://doi.org/10.1038/sj.bjp.0702357
  11. Peterson J, Dwyer J. 1998. Flavonoids: Dietary occurrence and biochemical activity. Nutr Res 18: 1995-2018. https://doi.org/10.1016/S0271-5317(98)00169-9
  12. Choi SY, Ko HC, Ko SY, Hwang JH, Park JG, Kang SH, Han SH, Yun SH, Kim SJ. 2007. Correlation between flavonoid content and the NO production inhibitory activity of peel extracts from various citrus fruits. Biol Pharm Bull 30: 772-778. https://doi.org/10.1248/bpb.30.772
  13. Fuhr U, Kummert AL. 1995. The fate of naringin in humans:a key to grapefruit juice-drug interactions? Clin Pharmacol Ther 58: 365-373. https://doi.org/10.1016/0009-9236(95)90048-9
  14. Santamaria RI, Reyes-Duarte MD, Barzana E, Fernando D, Gama FM, Mota M, Lopez-Munguia A. 2000. Selective enzyme-mediated extraction of capsaicinoids and caratenoids from chili guajillo puya (Capsicum annum L.) using ethanol as solvent. J Agric Food Chem 48: 3063-3067. https://doi.org/10.1021/jf991242p
  15. Seo JY, Lee JH, Kim NW, Her E, Chang SH, Ko NY, Yoo YH, Kim JW, Seo DW, Han JW, Kim YM, Choi WS. 2005. Effect of a fermented ginseng extract, BST204, on the expression of cyclooxygenase-2 in murine macrophages. Int Immunopharmacol 5: 929-936. https://doi.org/10.1016/j.intimp.2005.01.008
  16. Yang G, Park D, Lee J, Song BS, Jeon TH, Kang SJ, Jeon JH, Shin S, Jeong HS, Lee HJ, Kim YB. 2011. Suppressive effects of red ginseng preparations on SW480 colon cancer xenografts in mice. Food Sci Biotechnol 20: 1649-1653. https://doi.org/10.1007/s10068-011-0227-y
  17. Dallas C, Gerbi A, Tenca G, Juchaux F, Bernard FX. 2008. Lipolytic effect of a polyphenolic citrus dry extract of red orange, grapefruit, orange (SINETROL) in human body fat adipocytes. Mechanism of action by inhibition of cAMPphosphodiesterase (PDE). Phytomedicine 15: 783-792. https://doi.org/10.1016/j.phymed.2008.05.006
  18. Brand-Williams W, Cuvelier ME, Berset C. 1995. Use of free radical method to evaluate antioxidant activity. Lebensm Wiss u-Technol 28: 25-30. https://doi.org/10.1016/S0023-6438(95)80008-5
  19. Clarke G, Ting KN, Wiart C, Fry J. 2013. High correlation of 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging, ferric reducing activity potential and total phenolics content indicates redundancy in use of all three assays to screen for antioxidant activity of extracts of plants from the Malaysian rainforest. Antioxidants 2: 1-10. https://doi.org/10.3390/antiox2010001
  20. Cha JY. 2001. Biofunctional activities of citrus flavonoids. J Korean Soc Agric Chem Biotech 44: 122-128.
  21. Lee JH, Kim GH. 2010. Evaluation of antioxidant and inhibitory activities for different subclasses flavonoids on enzymes for rheumatoid arthritis. J Food Sci 75: H212-H217. https://doi.org/10.1111/j.1750-3841.2010.01755.x
  22. Mekhora C, Muangnoi C, Chingsuwanrote P, Dawilai S, Svasti S, Chasri K, Tuntipopipat S. 2012. Eryngium foetidum suppresses inflammatory mediators produced by macrophages. Asian Pac J Cancer Prev 13: 653-664. https://doi.org/10.7314/APJCP.2012.13.2.653
  23. Yang HL, Chen SC, Senthil Kumar KJ, Yu KN, Lee Chao PD, Tsai SY, Hou YC, Hseu YC. 2011. Antioxidant and antiinflammatory potential of hesperetin metabolites obtained from hesperetin-administered rat serum: an ex vivo approach. J Agric Food Chem 60: 522-532.
  24. Chao CL, Weng CS, Chang NC, Lin JS, Kao ST, Ho FM. 2010. Naringenin more effectively inhibits inducible nitric oxide synthase and cyclooxygenase-2 expression in macrophages than in microglia. Nutr Res 30: 858-864. https://doi.org/10.1016/j.nutres.2010.10.011
  25. Wang L, Tu YC, Lian TW, Hung JT, Yen JH, Wu MJ. 2006. Distinctive antioxidant and antiinflammatory effects of flavonols. J Agric Food Chem 54: 9798-9804. https://doi.org/10.1021/jf0620719
  26. Gamet-Payrastre L, Manenti S, Gratacap MP, Tulliez J, Chap H, Payrastre B. 1999. Flavonoids and the inhibition of PKC and PI 3-kinase. Gen Pharmacol 32: 279-286. https://doi.org/10.1016/S0306-3623(98)00220-1
  27. Kusano A, Nikaido T, Kuge T, Ohmoto T, Delle Monache G, Botta B, Botta M, Saitoh T. 1991. Inhibition of adenosine 3',5'-cyclic monophosphate phosphodiesterase by flavonoids from licorice roots and 4-arylcoumarins. Chem Pharm Bull (Tokyo) 39: 930-933. https://doi.org/10.1248/cpb.39.930
  28. Middleton E Jr, Kandaswami C. 1992. Effects of flavonoids on immune and inflammatory cell functions. Biochem Pharmacol 43: 1167-1179. https://doi.org/10.1016/0006-2952(92)90489-6
  29. Manthey JA, Grohmann K, Guthrie N. 2001. Biological properties of citrus flavonoids pertaining to cancer and inflammation. Curr Med Chem 8: 135-153. https://doi.org/10.2174/0929867013373723
  30. Li S, Sang S, Pan MH, Lai CS, Lo CY, Yang CS, Ho CT. 2007. Anti-inflammatory property of the urinary metabolites of nobiletin in mouse. Bioorg Med Chem Lett 17: 5177-5181. https://doi.org/10.1016/j.bmcl.2007.06.096
  31. Kootstra A. 1994. Protection from UV-B-induced DNA damage by flavonoids. Plant Mol Biol 26: 771-774. https://doi.org/10.1007/BF00013762
  32. Kanno S, Shouji A, Asou K, Ishikawa M. 2003. Effects of naringin on hydrogen peroxide-induced cytotoxicity and apoptosis in P388 cells. J Pharmacol Sci 92: 166-170. https://doi.org/10.1254/jphs.92.166
  33. Hwang SL, Shih PH, Yen GC. 2012. Neuroprotective effects of citrus flavonoids. J Agric Food Chem 60: 877-885. https://doi.org/10.1021/jf204452y

Cited by

  1. Effects of Nitrite and Nitrate Contents of Chinese Cabbage on Formation of N-Nitrosodimethylamine during Storage of Kimchi vol.45, pp.1, 2016, https://doi.org/10.3746/jkfn.2016.45.1.117
  2. Effects of Amount and Type of Jeotgal, a Traditional Korean Salted and Fermented Seafood, on N-Nitrosodimethylamine Formation during Storage of Kimchi vol.45, pp.9, 2016, https://doi.org/10.3746/jkfn.2016.45.9.1302
  3. Bioconverted Jeju Hallabong tangor (Citrus kiyomi×ponkan) peel extracts by cytolase enhance antioxidant and anti-inflammatory capacity in RAW 264.7 cells vol.10, pp.2, 2016, https://doi.org/10.4162/nrp.2016.10.2.131
  4. Antioxidant Activity and Inhibitory Effect against Oxidative Neuronal Cell Death of Kimchi Containing a Mixture of Wild Vegetables with Nitrite Scavenging Activity vol.44, pp.10, 2015, https://doi.org/10.3746/jkfn.2015.44.10.1458
  5. Peel Pellet on Obesity and Lipid Profile vol.2018, pp.1741-4288, 2018, https://doi.org/10.1155/2018/4341961
  6. 감귤피 효소적 추출물의 지방세포에서의 항비만 효과 vol.53, pp.2, 2021, https://doi.org/10.9721/kjfst.2021.53.2.149
  7. Investigation of Antimicrobial Activity of Rutaceae Fruit Ethanol Extracts Against Microorganisms-induced Skin Inflammation vol.26, pp.12, 2015, https://doi.org/10.9708/jksci.2021.26.12.237