DOI QR코드

DOI QR Code

Effects of Curcuma longa L. Extracts on Natural Killer Cells and T Cells

울금 주정 추출물이 자연살해세포와 T 면역세포에 미치는 영향

  • Ha, Yejin (Department of Medical Nutrition, Kyung Hee University) ;
  • Kim, Ok-Kyung (Department of Medical Nutrition, Kyung Hee University) ;
  • Nam, Da-Eun (Department of Medical Nutrition, Kyung Hee University) ;
  • Kim, Yongjae (Korea INSPharm Research Institute) ;
  • Kim, Eun (Korea INSPharm Research Institute) ;
  • Jun, Woojin (Department of Food and Nutrition, Chonnam National University) ;
  • Lee, Jeongmin (Department of Medical Nutrition, Kyung Hee University)
  • 하예진 (경희대학교 의학영양학과) ;
  • 김옥경 (경희대학교 의학영양학과) ;
  • 남다은 (경희대학교 의학영양학과) ;
  • 김용재 (한국인스팜(주) 중앙연구소) ;
  • 김은 (한국인스팜(주) 중앙연구소) ;
  • 전우진 (전남대학교 식품영양학과) ;
  • 이정민 (경희대학교 의학영양학과)
  • Received : 2014.11.03
  • Accepted : 2015.02.13
  • Published : 2015.03.31

Abstract

The present study investigated the immunomodulatory effects of Curcuma longa L. ethanol extracts on natural killer (NK) cells and T cells. We treated Curcuma longa L. ethanol extracts at concentrations of 20, 50, 100, and $150{\mu}g/mL$ to murine NK cells co-incubated with YAC-1 cells. Curcuma longa L. ethanol extracts resulted in increased NK cell activity compared to the control group at all concentrations. In the groups treated with Curcuma longa L. ethanol extracts, CD69 and IFN-${\gamma}$ expression levels significantly increased compared to the control group at 100 and $150{\mu}g/mL$. In addition, Curcuma longa L. ethanol extracts induced significant elevation of CD8+ T cell numbers in a dose-dependent manner. However, Curcuma longa L. ethanol extracts also led to reduction of CD4+ T cell and MHCII numbers. The findings of this study suggest that Curcuma longa L. ethanol extracts could enhance the immune response through activation of NK and cytotoxic T cells due to a proliferative shift of antigen presentation from MHCII to MHCI, presumably.

본 연구에서는 국내에서 재배되는 울금의 면역조절 효과에 대해 평가하고자 20% 주정 추출물을 이용하여 자연살해세포와 T 세포에 미치는 영향을 관찰하였다. 마우스의 비장세포에서 분리한 자연살해세포를 종양세포 YAC-1 세포와 함께 배양시켜 울금 20% 주정 추출물의 처리에 따른 변화를 관찰하였다. 그 결과 울금 20% 주정 추출물의 처리는 자연 살해세포의 CD69 발현과 IFN-${\gamma}$의 발현을 증가시켰고 결과적으로 활성이 증가되어 YAC-1 세포의 제거를 증가시켰음을 확인하였다. 또한 마우스의 비장세포에서 울금 20% 주정 추출물의 처리에 따른 T 세포의 변화를 관찰한 결과에서는 CD4+ T 세포보다는 CD8+ T 세포를 증가시켰음을 확인하여 감염된 세포나 종양세포 제거를 효과적으로 할 수 있을 것이라고 예상할 수 있었다. 결론적으로 울금 20% 주정 추출물은 내재면역과 적응면역에 영향을 미쳐 면역조절에 긍정적인 변화를 보였음을 확인하였다.

Keywords

References

  1. Banchereau J, Steinman RM. 1998. Dendritic cells and the control of immunity. Nature 392: 245-252. https://doi.org/10.1038/32588
  2. Tomasi TB Jr, Tan EM, Solomon A, Prendergast RA. 1965. Characteristics of an immune system common to certain external secretions. J Exp Med 121: 101-124. https://doi.org/10.1084/jem.121.1.101
  3. Hogquist KA, Baldwin TA, Jameson SC. 2005. Central tolerance: learning self-control in the thymus. Nat Rev Immunol 5: 772-782. https://doi.org/10.1038/nri1707
  4. Lievin-Le Moal V, Servin AL. 2006. The front line of enteric host defense against unwelcome intrusion of harmful microorganisms: mucins, antimicrobial peptides, and microbiota. Clin Microbiol Rev 19: 315-337. https://doi.org/10.1128/CMR.19.2.315-337.2006
  5. Flajnik MF, Du Pasquier L. 2004. Evolution of innate and adaptive immunity: can we draw a line? Trends Immunol 25: 640-644. https://doi.org/10.1016/j.it.2004.10.001
  6. Biron CA, Nguyen KB, Pien GC, Cousens LP, Salazar-Mather TP. 1999. Natural killer cells in antiviral defense: function and regulation by innate cytokines. Annu Rev Immunol 17: 189-220. https://doi.org/10.1146/annurev.immunol.17.1.189
  7. Wang R, Jaw JJ, Stutzman NC, Zou Z, Sun PD. 2012. Natural killer cell-produced IFN-$\gamma$ and TNF-$\alpha$ induce target cell cytolysis through up-regulation of ICAM-1. J Leukoc Biol 91: 299-309. https://doi.org/10.1189/jlb.0611308
  8. Frese-Schaper M, Keil A, Yagita H, Steiner SK, Falk W, Schmid RA, Frese S. 2014. Influence of natural killer cells and perforin-mediated cytolysis on the development of chemically induced lung cancer in A/J mice. Cancer Immunol Immunother 63: 571-580. https://doi.org/10.1007/s00262-014-1535-x
  9. Li Q, Morimoto K, Nakadai A, Inagaki H, Katsumata M, Shimizu T, Hirata Y, Hirata K, Suzuki H, Miyazaki Y, Kagawa T, Koyama Y, Ohira T, Takayama N, Krensky AM, Kawada T. 2007. Forest bathing enhances human natural killer activity and expression of anti-cancer proteins. Int J Immunopathol Pharmacol 20: 3-8. https://doi.org/10.1177/03946320070200S202
  10. Teh HS, Kisielow P, Scott B, Kishi H, Uematsu Y, Blüthmann H, von Boehmer H. 1988. Thymic major histocompatibility complex antigens and the alpha beta T-cell receptor determine the CD4/CD8 phenotype of T cells. Nature 335: 229-233. https://doi.org/10.1038/335229a0
  11. Shedlock DJ, Shen H. 2003. Requirement for CD4 T cell help in generating functional CD8 T cell memory. Science 300: 337-339. https://doi.org/10.1126/science.1082305
  12. Powrie F, Coffman RL. 1993. Cytokine regulation of T-cell function: potential for therapeutic intervention. Immunol Today 14: 270-274. https://doi.org/10.1016/0167-5699(93)90044-L
  13. Tong H, Song X, Sun X, Sun G, Du F. 2011. Immunomodulatory and antitumor activities of grape seed proanthocyanidins. J Agric Food Chem 21: 11543-11547.
  14. Schafer G, Kaschula CH. 2014. The immunomodulation and anti-inflammatory effects of garlic organosulfur compounds in cancer chemoprevention. Anticancer Agents Med Chem 14: 233-240. https://doi.org/10.2174/18715206113136660370
  15. Kim OK, Yoo SA, Nam DE, Kim Y, Kim E, Jun W, Hwan K, Lee J. 2014. Immunomodulatory effects of Curcuma longa L. extract in LP-BM5 murine leukemia viruses-induced murine acquired immune deficiency syndrome. J Korean Soc Food Sci Nutr 43: 1317-1324. https://doi.org/10.3746/jkfn.2014.43.9.1317
  16. Selvam R, Subramanian L, Gayathri R, Angayarkanni N. 1995. The anti-oxidant activity of tumeric (Curcuma longa). J Ethnopharmacol 47: 59-67. https://doi.org/10.1016/0378-8741(95)01250-H
  17. Chainani-Wu N. 2003. Safety and anti-inflammatory activity of curcumin: a component of tumeric (Curcuma longa). J Altern Complement Med 9: 161-168. https://doi.org/10.1089/107555303321223035
  18. Varalakshmi Ch, Ali AM, Pardhasaradhi BV, Srivastava RM, Singh S, Khar A. 2008. Immunomodulatory effects of curcumin: in-vivo. Int Immunopharmacol 8: 688-700. https://doi.org/10.1016/j.intimp.2008.01.008
  19. Pedersen BK, Ullum H. 1994. NK cell response to physical activity: possible mechanisms of action. Med Sci Sports Exerc 26: 140-146. https://doi.org/10.1249/00005768-199402000-00003
  20. Whiteside TL, Herberman RB. 1995. The role of natural killer cells in immune surveillance of cancer. Curr Opin Immunol 7: 704-710. https://doi.org/10.1016/0952-7915(95)80080-8
  21. Lanier LL. 1998. NK cell receptors. Annu Rev Immunol 16: 359-393. https://doi.org/10.1146/annurev.immunol.16.1.359
  22. Wright SC, Bonavida B. 1983. YAC-1 variant clones selected for resistance to natural killer cytotoxic factors are also resistant to natural killer cell-mediated cytotoxicity. Proc Natl Acad Sci USA 80: 1688-1692. https://doi.org/10.1073/pnas.80.6.1688
  23. See DM, Broumand N, Sahl L, Tilles JG. 1997. In vitro effects of echinacea and ginseng on natural killer and antibody- dependent cell cytotoxicity in healthy subjects and chronic fatigue syndrome or acquired immunodeficiency syndrome patients. Immunopharmacology 35: 229-235. https://doi.org/10.1016/S0162-3109(96)00125-7
  24. Borrego F, Robertson MJ, Ritz J, Pena J, Solana R. 1999. CD69 is a stimulatory receptor for natural killer cell and its cytotoxic effect is blocked by CD94 inhibitory receptor. Immunology 97: 159-165. https://doi.org/10.1046/j.1365-2567.1999.00738.x
  25. Sivori S, Vitale M, Morelli L, Sanseverino L, Augugliaro R, Bottino C, Moretta L, Moretta A. 1997. p46, a novel natural killer cell-specific surface molecule that mediates cell activation. J Exp Med 186: 1129-1136. https://doi.org/10.1084/jem.186.7.1129
  26. Sivori S, Pende D, Bottino C, Marcenaro E, Pessino A, Biassoni R, Moretta L, Moretta A. 1999. NKp46 is the major triggering receptor involved in the natural cytotoxicity of fresh or cultured human NK cells. Correlation between surface density of NKp46 and natural cytotoxicity against autologous, allogeneic or xenogeneic target cells. Eur J Immunol 29: 1656-1666. https://doi.org/10.1002/(SICI)1521-4141(199905)29:05<1656::AID-IMMU1656>3.0.CO;2-1
  27. Yadav VS, Mishra KP, Singh DP, Mehrotra S, Singh VK. 2005. Immunomodulatory effects of curcumin. Immunopharmacol Immunotoxicol 27: 485-497. https://doi.org/10.1080/08923970500242244
  28. Vivier E, Raulet DH, Moretta A, Caligiuri MA, Zitvogel L, Lanier LL, Yokoyama WM, Ugolini S. 2011. Innate or adaptive immunity? The example of natural killer cells. Science 331: 44-49. https://doi.org/10.1126/science.1198687
  29. Schroder K, Hertzog PJ, Ravasi T, Hume DA. 2004. Interferon- gamma: an overview of signals, mechanisms and functions. J Leukoc Biol 75: 163-189.
  30. Furtado GC, Curotto de Lafaille MA, Kutchukhidze N, Lafaille JJ. 2002. Interleukin 2 signaling is required for CD4(+) regulatory T cell function. J Exp Med 196: 851-857. https://doi.org/10.1084/jem.20020190
  31. Blackburn SD, Shin H, Haining WN, Zou T, Workman CJ, Polley A, Betts MR, Freeman GJ, Vignali DA, Wherry EJ. 2009. Coregulation of CD8+ T cell exhaustion by multiple inhibitory receptors during chronic viral infection. Nat Immunol 10: 29-37. https://doi.org/10.1038/ni.1679

Cited by

  1. Citrus Ethanol Extracts Promotes Innate Immune Response by Activating NF-κB vol.44, pp.9, 2015, https://doi.org/10.3746/jkfn.2015.44.9.1256
  2. In Vitro Hepatoprotective Effects of Fermented Curcuma longa L. by Aspergillus oryzae against Alcohol-Induced Oxidative Stress vol.45, pp.6, 2016, https://doi.org/10.3746/jkfn.2016.45.6.812
  3. 누에와 육계 복합 추출물의 in vivo 면역증진 기능성 연구 vol.33, pp.4, 2015, https://doi.org/10.6116/kjh.2018.33.4.19
  4. 체질푸드가 간호사의 스트레스 감소와 NK세포 활성도에 미치는 영향 vol.19, pp.3, 2015, https://doi.org/10.5392/jkca.2019.19.03.500