DOI QR코드

DOI QR Code

Insecticidal Activity of Coptis chinensis Extract Against Myzus persicae (Sulzer)

  • Jung, Ji Young (Division of Environmental Forest Science, Institute of Agriculture & Life Science, Gyeongsang National University) ;
  • Lee, Hyung Chul (Research Center of Ecowin CO,.LTD.) ;
  • Yang, Jae-Kyung (Division of Environmental Forest Science, Institute of Agriculture & Life Science, Gyeongsang National University)
  • Received : 2015.01.08
  • Accepted : 2015.02.03
  • Published : 2015.03.25

Abstract

In view of the environmental and health hazards posed by synthetic insecticides, the use of plant products as botanical insecticides has gained increasing in recent years. In this study, we reported the insecticidal activity of extracts isolated from Coptis chinensis. On crude extraction, among the various solvent types tested (water, 1% (w/v) of sodium hydroxide, 70% ethanol), the 70% ethanol extract showed the best insecticidal activity (36.5%). Three different fractions (n-hexane, chloroform and ethyl acetate) were obtained from crude extract (70% ethanol) of the chloroform fraction and found to have noteworthy insecticidal activity (62.9%) by filter paper contact bioassay. Their chemical structures were identified as 2-methoxy-4-vinylphenol and aniline by head space-GC-MS analysis. Both compounds displayed a dose-dependent insecticidal activity of Myzus persicae (Sulzer). Insecticidal activity at the lowest concentration tested (500 ppm) approached 85.4% in the aniline compared with 79.9% in the 2-methoxy-4-vinylphenol. The insecticidal activity was greater for the aniline than 2-methoxy-4-vinylphenol. It is believed that the insecticidal activity is due mainly to the presence of aniline.

Keywords

References

  1. Ahmed, S.M., Chander, H., Pereira, J. 1981. Insecticidal potential and biological activity of India indigenous plants against Musca domestica. International Pest Control Magazine 23: 170-175.
  2. Anon. 2010. Pharmacopoeia of the people's republic of China (2010 Chinese Edition). Chemical Industry Press, Beijing, 285-286.
  3. Anstead, J.A., Williamson, M.S., Denholm, I. 2005. Evidence formultiple origins of identical insecticide resistance mutations in theaphid Myzus persicae. Insect Biochemistry and Molecular Biology 35: 249-256. https://doi.org/10.1016/j.ibmb.2004.12.004
  4. Balandrin, M.F. 1985. Natural Plant Chemicals: Sources of Industrial and Medicinal Materials. Science 228: 1154-1160. https://doi.org/10.1126/science.3890182
  5. Bauernfeind, R., Chapman, R. 1985. Nonstable parathion and endosulfan resistance in green peach aphids (Homoptera: Aphididae). Journal of Economic Entomology 78: 516-522. https://doi.org/10.1093/jee/78.3.516
  6. Blackman, R., Devonshire, A. 1978. Further studies of the genetics of thecarboxylesteraseregulatory system involved in resistance to organophosphorous insecticides in Myzus persicae (Sulzer). Journal of Pesticide Science 9: 517-521. https://doi.org/10.1002/ps.2780090605
  7. Casida, J.E., Quistad, G.B. 1998. Golden age of insecticide research: Past, present, or future? Annual Review of Entomology 43: 1-16. https://doi.org/10.1146/annurev.ento.43.1.1
  8. Chu, S.S., Jiang, G.H., Liu, Z.L. 2011. Insecticidal Components from the Essential Oil of Chinese Medicinal Herb, Ligusticum chuanxiong Hort. Journal of Chemistry 8(1): 300-304.
  9. Desneux, N., Fauvergue, X., Moncharmont, F., Kerhoas, L., Ballanger, Y., Kaiser, L. 2005. Diaeretiella rapae Limits Myzus persicae Populations After Applications of Deltamethrin in Oilseed Rape. Journal of Economic Entomology 98(1): 9-17 https://doi.org/10.1093/jee/98.1.9
  10. Eto, M. 1974. Organophosphorus pesticides: organic and biological chemistry. Boca Raton, Florida, CRC Press.
  11. Flanders, K., Radcliffe, E., Ragsdale, D. 1991. Potato leafroll virus spread in relation to densities of green peach aphid (Homoptera: Aphididae): Implications for management thresholds for Minnesota seed potatoes. Journal of Economic Entomology 84: 1028-1036. https://doi.org/10.1093/jee/84.3.1028
  12. Gray, S.M., Gildow, F. 2003. Luteovirus-aphid interactions. Annual Reviews. Phytopathology, 41: 539-566. https://doi.org/10.1146/annurev.phyto.41.012203.105815
  13. Hoogenboom, R., Schubert, U.S. 2007 Microwave-assisted polymer synthesis: recent developments in a rapidly expanding field of research. Macromolecular Rapid Communications 28(4): 368-386. https://doi.org/10.1002/marc.200600749
  14. Ishaaya, I. 2001. Biochemical processes related to insecticide action: an overview. pp. 1-16 in Ishaaya, I. (Ed.) Biochemical sites simportant in insecticide action and resistance. Berlin, Heidelberg, Springer Verlag.
  15. Jeon, J.H., Kim, Y.K., Lee, S.G., Lee, S.H., Lee, H.S. 2011. Insecticidal activities of a Diospyros kaki root-isolated constituent and its derivatives against Nilaparvata lugens and Laodelphax striatellus. Journal of Asia-Pacific Entomology 14: 449-453. https://doi.org/10.1016/j.aspen.2011.07.005
  16. Jung, H.A., Min, B.S., Yokozawa, T., Lee, J.H., Kim, Y.S., Choi, J.S. 2009. Anti-Alzheimer and antioxidant activities of Coptidis Rhizoma alkaloids. Biological and Pharmaceutical Bulletin 32: 1433-1438 https://doi.org/10.1248/bpb.32.1433
  17. Karawita, R., Siriwardhana, N., Lee, K.W., Heo, M.S., Yeo, I.K., Lee, Y.D. 2005. Reactive oxygen species scavenging, metal chelating, reducing power and lipid peroxidation inhibition properties of different solvent fractions from Hizikia fusiformis. European Food Research and Technology 220(3-4): 363-371. https://doi.org/10.1007/s00217-004-1044-9
  18. Kim, J.M., Jung, H.A., Choi, J.S., Lee, N.G. 2010. Identification of antiinflammatory target genes of Rhizoma coptidis extract in lipopolysaccharidestimulated RAW264.7 murine macrophage-like cells. Journal of Ethnopharmacology 130: 354-362. https://doi.org/10.1016/j.jep.2010.05.022
  19. Kong, W.J., Zhao, Y.L., Xiao, X.H., Wang, J.B., Li, H.B., Li, Z.L., Jin, C., Liu, Y. 2009. Spectrum-effect relationships between ultra performance liquid chromatography fingerprints and anti-bacterial activities of Rhizoma coptidis. Analytical Chimica Acta 634: 279-285. https://doi.org/10.1016/j.aca.2009.01.005
  20. Malik, A., Singh, N., Satya, S. 2007. Housefly (Musca domestica): a review of control strategies for a challenging pest. Journal of Environmental Science and Health, Part B 42: 453-469
  21. Martinez-Torres, D., Foster, S.P., Field, L.M., Devonshire, A.L., Williamson, M.S. 1999. A sodium channel point mutation is associated with resistance to DDT and pyrethroid insecticides in the peach-potato aphid, Myzus persicae (Sulzer) (Hemiptera: Aphididae). Insect Molecular Biology 8(3): 339-346. https://doi.org/10.1046/j.1365-2583.1999.83121.x
  22. McLeod, P. 1991. Influence of temperature on trans-laminar and systemic toxicities of aphicidesfor green peach aphid (Homoptera: Aphididae) suppression on spinach. Journal of Economic Entomology 84: 1558-1561. https://doi.org/10.1093/jee/84.5.1558
  23. Nauen, R., Ebbinghaus-Kintscher, U., Elbert, A., Jeschke, P., Tietjen, K. 2001. Acetylcholine receptors as sites for developing neonicotinoid insecticides. pp. 77-105 in Ishaaya, I. (Ed.) Biochemical sites simportant in insecticide action and resistance. Berlin, Heidelberg, Springer Verlag.
  24. Pelucchi, C., Bosetti, C., Negri, E., Malvezzi, M., LaVecchia, C. 2006. Mechanisms of disease: The epidemiology of bladder cancer. Nature clinical practice urology 3(6): 327-340. https://doi.org/10.1038/ncpuro0510
  25. Petitt, F., Smilowitz, Z. 1982. Green peach aphid feeding damage to potato in various plantgrowth stages. Journal of Economic Entomology 75: 431-435. https://doi.org/10.1093/jee/75.3.431
  26. Ramsey, J., Wilson, A.C., De Vos, M., Sun, Q., Tam-borindeguy, C., Winfield, A., Malloch, G., Smith, D.M., Fenton, B., Gray, S.M., Jander, G. 2007. Genomic re-sources for Myzus persicae: EST sequencing, SNPiden-tification, and microarray design. BMC Genomics 8: 423. https://doi.org/10.1186/1471-2164-8-423
  27. Remppis, A., Bea, F., Greten, H.J., Buttler, A., Wang, H., Zhou, Q., Preusch, M.R., Enk, R., Ehehalt, R., Katus, H., Blessing, E. 2010. Rhizoma Coptidis inhibits LPS-induced MCP-1/CCL2 production in murine macrophages via an AP-1 and NF kappa B dependent pathway. Mediators of Inflammation, 194896: 8
  28. Stewart, J., Aharoni, Y., Hartsell, P., Young, D. 1980. Acetaldehyde fumigation at reducedpressures to control the green peach aphid on wrapped and packed head lettuce. Journal of Economic Entomology 73: 149-152. https://doi.org/10.1093/jee/73.1.149
  29. Sukamar, K., Perich, M.J., Boobar, L.R. 1991. Botanical derivatives in mosquito control: a review. Journal of the American Mosquito Control Association 7: 210-237
  30. Tagu, D., Klingler, J.P., Moya, A., Simon, J. 2008 Early progress in aphid genomics and consequences for plant-aphid interactions studies. Molecular Plant Microbe Interactions 21: 701-708 https://doi.org/10.1094/MPMI-21-6-0701
  31. Tsai, H.H., Chen, I.J., Lo, Y.C. 2008. Effects of San-Huang-Xie-Xin-Tang on U46619-induced increase in pulmonary arterial blood pressure. Journal of Ethnopharmacology 117: 457-462. https://doi.org/10.1016/j.jep.2008.02.024
  32. Williams, P.L., James, R.C., Roberts, S.M. 2000. Principles of toxicology: Environmental and industrial applications. 2nd Ed. Wiley, New York, N.Y.