DOI QR코드

DOI QR Code

Wet Air Oxidation Pretreatment of Mixed Lignocellulosic Biomass to Enhance Enzymatic Convertibility

  • Sharma, A. (CSIR-National Environmental Engineering Research Institute) ;
  • Ghosh, A. (CSIR-National Environmental Engineering Research Institute) ;
  • Pandey, R.A. (CSIR-National Environmental Engineering Research Institute) ;
  • Mudliar, S.N. (CSIR-National Environmental Engineering Research Institute)
  • Received : 2014.07.08
  • Accepted : 2014.10.21
  • Published : 2015.04.01

Abstract

The present work explores the potential of wet air oxidation (WAO) for pretreatment of mixed lignocellulosic biomass to enhance enzymatic convertibility. Rice husk and wheat straw mixture (1:1 mass ratio) was used as a model mixed lignocellulosic biomass. Post-WAO treatment, cellulose recovery in the solid fraction was in the range of 86% to 99%, accompanied by a significant increase in enzymatic hydrolysis of cellulose present in the solid fraction. The highest enzymatic conversion efficiency, 63% (by weight), was achieved for the mixed biomass pretreated at $195^{\circ}C$, 5 bar, 10 minutes compared to only 19% in the untreated biomass. The pretreatment under the aforesaid condition also facilitated 52% lignin removal and 67% hemicellulose solubilization. A statistical design of experiments on WAO process conditions was conducted to understand the effect of process parameters on pretreatment, and the predicted responses were found to be in close agreement with the experimental data. Enzymatic hydrolysis experiments with WAO liquid fraction as diluent showed favorable results with sugar enhancement up to $10.4gL^{-1}$.

Keywords

References

  1. Ravikumar, R., Ranganathan, B. V., Chathoth, K. N. and Gobikrishnan, S., Korean J. Chem. Eng., 30(5), 1051-1057(2013). https://doi.org/10.1007/s11814-012-0215-9
  2. Balat, M., Balat, H. and Oz, C., Prog. Energy Combust. Sci., 34, 551-573(2008). https://doi.org/10.1016/j.pecs.2007.11.001
  3. Gunatilake, H., H India: Study on Cross-Sectoral Implications of Biofuel Production and Use. Final Report of TA 7250-IND (2011)
  4. Bhojvaid, P. P. Biofuels: Towards a greener and secure energy future. TERI Press (2006).
  5. Licht, F. O., World Ethanol Market: The Outlook to 2015, Tunbridge Wells, Agra Europe Special Report, UK (2006).
  6. Sukumaran, R. K., Surender, V. J., Sindhu, R., Binod, P., Janu, K. U. and Sajna, K. V., Bioresour. Technol., 101, 4826-4833(2010). https://doi.org/10.1016/j.biortech.2009.11.049
  7. Berlin, A., Balakshin, M., Gilkes, N., Kadla, J., Maximenko, V., Kubo, S. and Saddler, J., J. Biotechnol., 125, 198-209(2006). https://doi.org/10.1016/j.jbiotec.2006.02.021
  8. Menon, V. and Rao, M., Prog. Energy. Combust. Sci., 38, 522-550 (2012). https://doi.org/10.1016/j.pecs.2012.02.002
  9. Kumar, P., Barrett, D. M., Delwiche, M. J. and Stroeve, P., Ind. Eng. Chem. Res., 48(8), 3713-3729(2009). https://doi.org/10.1021/ie801542g
  10. Han, M., Kim, Y., Kim, Y., Chung, B. and Choi, G. W., Korean J. Chem. Eng., 28(1), 119-125(2011). https://doi.org/10.1007/s11814-010-0330-4
  11. Bjerre, A. B., Oleson, A. B., Fernqvist, T., Ploger, A. and Schmidt, A. S., Biotechnol. Bioeng., 49, 568-577(1996). https://doi.org/10.1002/(SICI)1097-0290(19960305)49:5<568::AID-BIT10>3.3.CO;2-4
  12. Ravikumar, R., Ranganathan, B. V., Chathoth, K. N. and Gobikrishnan, S., Korean J. Chem. Eng., 30(5), 1051-1057(2013). https://doi.org/10.1007/s11814-012-0215-9
  13. Schmidt, A. S. and Thomsen, A. B., Bioresour. Technol., 64, 139-151(1995).
  14. Mishra, V. S., Mahajani, V. V. and Joshi, J. B., Wet air oxidation. Ind. Eng. Chem. Res., 34, 2-48(1995). https://doi.org/10.1021/ie00040a001
  15. Banerjee, S., Sen, R. and Pandey, R. A., Biomass Bioenerg., 33, 1680-1686(2009). https://doi.org/10.1016/j.biombioe.2009.09.001
  16. Ayeni, A. O., Banerjee, S., Omoleye, J. A. and Hymore, F. K., Biomass Bioenerg., 48, 130-138(2013). https://doi.org/10.1016/j.biombioe.2012.10.021
  17. Alvira, P., Tomas-Pejo, E., Ballesteros, M. and Negro, M. J., Bioresour. Technol., 101, 4851-4861(2010). https://doi.org/10.1016/j.biortech.2009.11.093
  18. Simmons, T. J., Lee, S. H., Miao, J., Miyauchi, M., Park, T. J., Bale, S. S. and Linhardt, R. J., Wood Sci Technol., 45, 719-733 (2011). https://doi.org/10.1007/s00226-010-0395-6
  19. Sluiter, A., Hames, B., Ruiz, R., Scarlata, C., Wooley, R. and Sluiter, J., Golden, CO: National Renewable Energy Laboratory, NREL/TP-510-42618(2008).
  20. Miller, G. L., Anal. Chem. 31, 426-428(1959). https://doi.org/10.1021/ac60147a030
  21. Banerjee, S., Sen, R., Mudliar, S. N., Pandey, R. A., Chakrabarti, T. and Satpute, D., Biotechnol. Progr., 27, 691-697(2011). https://doi.org/10.1002/btpr.589
  22. Kwak, K. O., Jung, S. J., Chung, S. Y., Kang, C. M. Huh, Y. I. and Bae, S. O., Biochem. Eng J., 31, 1-7(2006). https://doi.org/10.1016/j.bej.2006.05.001
  23. Klinke, H. B., Ahring, B. K., Schmidt, A. S. and Thomsen, A. B., Bioresour. Technol., 82, 15-26(2002). https://doi.org/10.1016/S0960-8524(01)00152-3
  24. Palonen, H., Thomsen, A. B., Tenkanen, M., Schmidt, A. S. and Viikari, L., Appl. Biochem. Biotechnol., 117, 1-17 (2004). https://doi.org/10.1385/ABAB:117:1:01
  25. Martin, C., Marcet, M. and Thomsen, A. B., Bioresources, 3, 670-683 (2008).
  26. Fayyaz-ur-Rehman, M., Tariq, M. I., Aslam, M., Khadija, G. and Iram, A., Open Enzym Inhib J., 2, 8-11(2009). https://doi.org/10.2174/1874940200902010008
  27. Kristensen, J. B., Felby, C. and Jorgensen, H., Appl. Biochem. Biotechnol., 156(1-3), 127-132(2009). https://doi.org/10.1007/s12010-008-8375-0

Cited by

  1. Production of high concentrated cellulosic ethanol by acetone/water oxidized pretreated beech wood vol.10, pp.1, 2017, https://doi.org/10.1186/s13068-017-0737-9
  2. Investigation of different pretreatment methods of Mediterranean-type ecosystem agricultural residues: characterisation of pretreatment products, high-solids enzymatic hydrolysis and bioethanol production pp.1759-7277, 2017, https://doi.org/10.1080/17597269.2017.1378988
  3. Alkali pretreated sugarcane bagasse, rice husk and corn husk wastes as lignocellulosic biosorbents for dyes vol.2, pp.None, 2015, https://doi.org/10.1016/j.carpta.2021.100061
  4. Improving enzymatic hydrolysis of lignocellulosic biomass by bio-coordinated physicochemical pretreatment-A review vol.8, pp.None, 2022, https://doi.org/10.1016/j.egyr.2021.12.015