DOI QR코드

DOI QR Code

Characteristics of Flow Pattern and Mass Transfer in a Shaking Vessel with Figure-Eight Circulating Motion

8자 진동교반에 의한 교반조내 유동상태 및 물질전달 특성

  • Lee, Young Sei (School of Nano & Materials Science and Engineering, Kyungpook National University) ;
  • Kato, Yoshihito (Department of Life and Materials Engineering, Nagoya Institute of Technology)
  • Received : 2014.09.04
  • Accepted : 2014.12.21
  • Published : 2015.04.01

Abstract

The flow pattern and the solid-liquid mass transfer coefficient in figure-eight shaking vessels were observed by experimental method. The flow patterns, mixing time, power consumption and mass transfer coefficient in the figureeight shaking vessels changed irregularly with increase in the shaking frequency. Any frequency, even in the Fr = 0.095 or more became clear experimentally. The region of the optimum operating condition of the figure-eight shaking was larger than that of the reciprocal shaking. The solid-liquid mass transfer coefficient was correlated with the same correlation as that of the rotary shaking vessel of existing. The gas-liquid mass transfer coefficient of the figure-eight shaking vessel was also correlated with the same type of correlation as that of the rotary shaking vessel of existing.

8자 진동교반조에 대해 실험적으로 유동상태를 관찰하여 혼합 가시화, 소요동력, 고-액 및 기-액 물질이동에 대한 여러가지의 특성을 측정하였다. 진동수가 증가하면 유동상태, 혼합시간 소요동력 및 물질이동계수는 규칙적으로 변하지 않으므로 조작조건의 선정이 중요하다. 어떤 진동수에서라도 Fr = 0.095 이상에서는 실험적으로 명확하게 되었다. 이때 교반조내 유체는 선회류형으로 되어 혼합에 적합한 상태가 되고, 8자 진동교반에서의 최적 조작범위는 왕복 진동교반 보다도 넓었다. 8자 진동교반과 기존의 선회진동교반내의 고-액간 물질이동계수는 완전히 같은 식으로 상관되었다. 또한 기-액간 물질이동용량계수도 기존의 선회진동교반에서의 식과 같은 형태의 상관식으로 나타났다.

Keywords

References

  1. Smith, C. G. and Marvin, J. J., "Aeration Requirements for the Growth of Aerobic Microorganisms," J. Bacteriol., 68, 346-350 (1954).
  2. Roth, N. G., Lively, D. H. and Hodge, H. M., "Influence of Oxygen Uptake and Age of Culture on Sporulation of Bacillus Anthracis and Bacillus Grobigii," J. Bactriol., 69, 455-459(1955).
  3. Rhodes, R. P. and Garden Jr, E. L., "Characterization of Agitation Effects in Shaken Flasks," Ind. Eng. Chem., 49, 1232-1236(1957).
  4. Auro, M. A., Howard, M. H. and Roth, N. G., "Oxygen Absorption Rates in Shaken Flasks," Ind. Eng. Chem., 49, 1237-1238(1957). https://doi.org/10.1021/ie50572a024
  5. Garden Jr, E. L., "Improved Shaken Flask Performance," Biotech. Bioeng., 4, 99-103(1962). https://doi.org/10.1002/bit.260040112
  6. Hara, M., "Free Surface Observations of Various Liquid in a Rotary Shaken Flask (I) Some Analysis and Experiment, Assuming Liquid as Ideal," HakkouKogaku, 43, 590-596(1965a).
  7. Hara, M., "Free Surface Observations of Various Liquid in a Rotary Shaken Flask (II)Some Analysis of the Results of Experiments Using Newtonian Liquid," HakkouKogaku, 43, 597-602 (1965b).
  8. Brandl, E. A. S. and Steiner, H., "Aeration in Submerged Fermentation," Biotech. Bioeng., 8, 297-313(1966). https://doi.org/10.1002/bit.260080210
  9. Sumino, Y., Akiyama, S. and Fukada, H., "Performance of the Shaking Flask (1) Power Consumption," J. Ferment. Technol., 50, 203-208(1972).
  10. Sumino, Y. and Akiyama, S., "Measurement of the Overall Volumetric Coefficient of Heat Transfer of a Shaking Flask," J. Ferment. Technol., 65, 285-289(1987). https://doi.org/10.1016/0385-6380(87)90089-6
  11. Gardner, J. and Tatterson, G., "Characterization of Mixing in Shaker Table Contauners," Biotechnol. Bioeng., 39, 794-797(1992). https://doi.org/10.1002/bit.260390713
  12. Fujita, M., Iwahori, K., Tatsuta, S. and Yamakawa, K., "Analysis of Pellet Formation of Aspergillusniger Based on Shear Stress," J. Ferm. Bioeng., 78, 368-373(1994). https://doi.org/10.1016/0922-338X(94)90282-8
  13. Kato, Y., Hiraoka, S., Tada, Y., Koh, S. T. and Lee, Y. S., "Mixing Time and Power Consumption for a Liquid in a Vertical Cylindrical Vessel Shaken in a Horizontal Circle," Trans. IChemE., 74, 451-455(1996a).
  14. Kato, Y., Hiraoka, S., Tada, Y., Sato, K. and Ohishi, T., "Measurement of Mass Transfer Rate from Free Surface in Shaking Vessel Type Bioreactor," J. Chem. Eng. Japan, 30, 362-365(1997a). https://doi.org/10.1252/jcej.30.362
  15. Kato, Y., Hiraoka, S., Tada, Y. and Nomura, T., "Solid-Liquid Mass Transfer in a Shaking Vessel for a Bioreactor with Current Pole," Canadian J. Chem. Eng., 76, 441-445(1998). https://doi.org/10.1002/cjce.5450760314
  16. Kato, Y., Hiraoka, S., Tada, Y., Ue, T., Saito, T., and Nomura, T., "Improvement of Particle Dispersion in a Shaking Vessel with Current Pole," J. Chem. Eng. Japan, 29, 697-701(1996b). https://doi.org/10.1252/jcej.29.697
  17. Kato, Y., Honda, H., Hiraoka, S., Tada, Y., Kobayashi, T., Sato, K., Saito, T., Nomura, T. and Ohishi, T., "Performance of a Shaking Vessel Type Bioreactor with Current Pole," J. Ferment. Bioeng. 84, 65-69(1997b). https://doi.org/10.1016/S0922-338X(97)82788-2
  18. Büchs, J., Maier, U., Milbradt, C. and Zoels, B., "Power Consumption in Shaking Flasks on Rotary Shaking Machines: I. Power Consumption Measurement in Unbaffled Flasks at Low Liquid Viscosity," Biotech. Bioeng., 68, 589-593(2000a). https://doi.org/10.1002/(SICI)1097-0290(20000620)68:6<589::AID-BIT1>3.0.CO;2-J
  19. Büchs, J., Maier, U., Milbradt, C. and Zoels, B., "Power Consumption in Shaking Flasks on Rotary Shaking Machines: II. Nondimensional Description of Specific Power Consumption and Flow Regimes in Unbaffled Flasks at Elevated Liquid Viscosity," Biotech. Bioeng., 68, 594-601(2000b). https://doi.org/10.1002/(SICI)1097-0290(20000620)68:6<594::AID-BIT2>3.0.CO;2-U
  20. Büchs, J. and Zoels, B., "Evaluation of Maximum to Specific Power Consumption Ratio in Shaking Bioreactors," J. Chem. Eng. Japan, 34, 647-653(2001). https://doi.org/10.1252/jcej.34.647
  21. Kato, I. and Tanaka, H., "Development of a Novel Box-Shaped Shake Flask with Efficient Gas Exchange Capacity," J. Ferm. Bioeng., 85, 404-409(1998). https://doi.org/10.1016/S0922-338X(98)80084-6
  22. Kato, Y., Hiraoka, S., Tada, Y., Hirose, K. and Buchs, J., "Mixing Performance of a Reciprocally Shaking Vessel," J. Chem. Eng. Japan, 36, 663-667(2003a). https://doi.org/10.1252/jcej.36.663
  23. Kato, Y., Hiraoka, S., Tada, Y., Watanabe, S. and Buchs, J., "Solid-Liquid Mass Transfer and Critical Frequency for Complete Suspension in a Reciprocally Shaking Vessel," J. Chem. Eng. Japan, 36, 1410-1414(2003b). https://doi.org/10.1252/jcej.36.1410
  24. Malik, M., Mujumdar, A. S. and Dave, R., "Numerically-Simulated Characteristics of Granular Flow in an Oscillating Sectorial Container," Powder Technol., 133, 91-105(2003). https://doi.org/10.1016/S0032-5910(03)00087-1
  25. Hiraoka, S., Tada, Y., Suzuki, H., Mori, H., Aragaki, T. and Yamada, I., "Correlation of Mass Transfer Volumetric Coefficient with Power Input in Stirred Liquid-Liquid Dispersions," J. Chem. Eng. Japan, 23, 468-474(1990). https://doi.org/10.1252/jcej.23.468
  26. Levins, B. E. and Glastonbury, J. R., "Particle-Liquid Hydrodynamic and Mass Transfer in a Stirred Vessel Part II - Mass Transfer," Trans. IChemE, 50, 132-146(1972).
  27. Lee, Y. S., "Characteristic of Mass Transfer Volumetric Coefficient and Sauter Mean Diameter in a Liquid-Liquid Agitated Vessel," Korean Chem. Eng. Res., 50(5), 913-922(2012). https://doi.org/10.9713/kcer.2012.50.5.913
  28. Lee, Y. S., Kato, Y. and Suzuki, J., "Solid-Liquid Mass Transfer in Gas-Solid-Liquid 3-Phase System Agitated Vessel," J. Korean Ind. Chem., 17(5), 509-516(2006).