DOI QR코드

DOI QR Code

Scenario-based Design and Life Cycle Cost Analysis of Energy Supply System for Transportation Sector

도로운송부문용 에너지 공급 시스템 설계 및 경제성평가

  • Han, Seulki (Department of Energy & Chemical Engineering, Incheon National University) ;
  • Kim, Jiyong (Department of Energy & Chemical Engineering, Incheon National University)
  • 한슬기 (인천대학교 에너지화학공학과) ;
  • 김지용 (인천대학교 에너지화학공학과)
  • Received : 2014.07.18
  • Accepted : 2014.12.26
  • Published : 2015.04.01

Abstract

This study aims to design energy supply systems from various energy sources for transportation sectors and comparatively analyze the life cycle cost of different scenario-based systems. For components of the proposed energy supply system, we consider a typical oil refinery, byproduct hydrogen system, renewable energy source (RES)-based electric generation system and existing electricity grid. We also include three types of vehicles in transportation sector such as internal combustion engine vehicle (ICEV), electric vehicle (EV), fuel cell vehicle (FCV). We then develop various energy supply scenarios which consist of such components and evaluate the economic performance of different systems from the viewpoint of life cycle cost. Finally we illustrate the applicability of the proposed framework by conducting the design problem of energy supply systems of Jeju, Korea. As the results of life cycle cost analysis, EV fueled by electricity from grid is the most economically feasible. In addition, we identify key parameters to contribute the total life cycle cost such as fuel cost, vehicle cost, infra cost and maintenance cost using sensitivity analysis.

본 연구에서는 다양한 도로운송부문용 에너지 공급 시스템을 구축하고 각 시나리오의 최적 비용을 비교분석하였다. 에너지 공급 시스템의 구성요소로써 기존의 정유공정, 부생수소 시스템, 신재생 에너지 자원 기반의 전력 생산공정, 전력운송을 위한 전력망을 설정하였으며, 내연기관자동차, 전기자동차, 연료전지자동차 등 세 가지의 도로운송부문용 자동차를 포함하였다. 이러한 구성요소를 포함한 다양한 에너지 공급 시스템 시나리오를 기반으로 최적 생애주기비용을 규명할 수 있는 에너지 시스템 평가모델을 개발하였다. 본 연구에서 개발한 최적화 모델을 제주도 지역에 적용함으로써 모델의 성능을 검증하였고 또한 제주도 지역의 에너지 시스템 구축에 관한 다양한 시나리오의 경제성을 분석하였다. 제주도 도로운송부문용 에너지 공급 시스템의 생애주기비용 분석 결과, 전력망을 이용하여 전기를 공급하는 전기자동차 시나리오가 상대적으로 가장 높은 경제성을 보였으며, 신재생 에너지 자원을 이용하여 수소를 공급하는 연료전지자동차 시나리오가 가장 낮은 경제성을 보였다. 또한 연료비용, 차량비용, 인프라비용, 유지비용 등 주요 비용 관련 변수들에 관한 민감도분석을 수행함으로써 생애주기비용의 변화에 주요한 구성요소들을 규명하였다.

Keywords

References

  1. Son, H. K., "Smart Grid and Charge Station Infrastructure for Electric Vehicle," Korea Electrotechnology Research Institute Report, 59(4), 47-53(2010).
  2. Lee, K. Y., Kim, D. O., Kim, H. K. and Moon, H. W., "A Study on the Insulation Resistance Measurement Technique for Electrical Safety of Green Car," Trans. KIEE, 4, 597-601(2009).
  3. Kim, N. I., "A Strategy for Energy Technology Export," Korea Energy Economics Institute, Basic Research Report: No.13-35(2013).
  4. U.S. Department of energy, "Transportation Energy Futures: Project Overview and Findings," NREL Report: PR-6A20-56270(2013).
  5. European Union, "EC rolls out CARS 2020 action plan for European auto Industry," Proceeding 158th WP: WP.29-158-30(2012).
  6. Kim, J. W., "World Energy Market Insight," Korea Energy Economics Institute, Basic Research Report: No.13-10(2013).
  7. Kim, J. and Moon, I., "The Role of Hydrogen in the Road Transportation Sector for a Sustainable Energy System: a Case Study of Korea," Int. J. Hydrog. Energy, 33, 7326-7337(2008). https://doi.org/10.1016/j.ijhydene.2008.09.050
  8. Joo, O. S., "Hydrogen Production Technology," Korean Chem. Eng. Res., 49(6), 688-696(2011). https://doi.org/10.9713/kcer.2011.49.6.688
  9. Jung, I. H., Park, C. S., Park, S. H., Na, J. G., and Han, C. H., "A Comparative Study of Various Fuel for Newly Optimized Onboard Fuel Processor System under the Simple Heat Exchanger Network," Korean Chem. Eng. Res., 52(6), 720-726(2014). https://doi.org/10.9713/kcer.2014.52.6.720
  10. Kim, H., Tenreiro, C. and Ahn, T. K., "2D Representation of Life Cycle Greenhouse Gas Emission and Life Cycle Cost of Energy Conversion for Various Energy Resources," Korean J. Chem. Eng., 30(10), 1882-1888(2013). https://doi.org/10.1007/s11814-013-0121-9
  11. Chung, J. W., Chae, H. S. and Kim, J. D., "Life-cycle Cost Analysis of EV," Journal of Business Research, No. 26, 133-151(2011).
  12. Karabasoglu, O. and Michalek, J., "Influence of Driving Patterns on Life Cycle Cost and Emissions of Hybrid and Plug-in Electric Vehicle Powertrains," Energy Policy, 60, 445-461(2013). https://doi.org/10.1016/j.enpol.2013.03.047
  13. Ma, H., Balthasar, F., Tait, N., Riera-Palou, X. and Harrison, A., "A New Comparison Between the Life Cycle Greenhouse Gas Emissions of Battery Electric Vehicles and Internal Combustion Vehicles," Energy Policy, 44, 160-173(2012). https://doi.org/10.1016/j.enpol.2012.01.034
  14. Zhou, G., Ou, X. and Zhang, X., "Development of Electric Vehicles Use in China: A Study From the Perspective of Life Cycle Energy Consumption and Greenhouse Gas Emissions," Energy Policy, 59, 875-884(2013). https://doi.org/10.1016/j.enpol.2013.04.057
  15. Doucette, R. T. and McCulloch, M. D., "Modeling the $CO_2$ Emissions from Battery Electric Vehicles Given the Power Generation Mixes of Different Countries," Energy Policy, 39, 803-811(2011). https://doi.org/10.1016/j.enpol.2010.10.054
  16. Huo, H., Zhang, Q., Wang, M. Q., Streets, D. G. and He, K., "Environmental Implication of Electric Vehicles in China," Environ. Sci. Technol., 44, 4856-4861(2010). https://doi.org/10.1021/es100520c
  17. Nansai, K., Tohno, S., Kono, M., Kasahara, M. and Moriguchi, Y., "Life Cycle Analysis of Charging Infrastructure for Electric Vehicles," Appl. Energy, 70, 251-265(2001). https://doi.org/10.1016/S0306-2619(01)00032-0
  18. Lucas, A., Silva, C. A. and Neto, R. C., "Life Cycle Analysis of Energy Supply Infrastructure for Conventional and Electric Vehicles," Energy Policy, 41, 537-547(2012). https://doi.org/10.1016/j.enpol.2011.11.015
  19. Ekdunge, P. and Raberg, M., "The Fuel Cell Vehicle Analysis of Energy Use, Emissions and Cost," Int. J. Hydrog. Energy, 23, 381-385(1998). https://doi.org/10.1016/S0360-3199(97)00062-1
  20. Zamel, N. and Li, X., "Life Cycle Analysis of Vehicles Powered by a Fuel Cell and by Internal Combustion Engine for Canada," J. Power Sources, 155, 297-310(2006). https://doi.org/10.1016/j.jpowsour.2005.04.024
  21. Zamel, N. and Li, X., "Life Cycle Comparison of Fuel Cell Vehicles and Internal Combustion Engine Vehicles for Canada and United States," J. Power Sources, 162, 1241-1253(2006). https://doi.org/10.1016/j.jpowsour.2006.08.007
  22. Patterson, T., Esteves, S., Carr, S., Zhang, F., Reed, J., Maddy, J. and Guwy, A., "Life Cycle Assessment of the Electrolytic Production and Utilization of Low Carbon Hydrogen Vehicle Fuel," Int. J. Hydrog. Energy, 39, 7190-7201(2014). https://doi.org/10.1016/j.ijhydene.2014.02.044
  23. Ou, X., Yan, X., Zhang, X. and Liu, Z., "Life Cycle Analysis on Energy Consumption and GHG Emission Intensities of Alternative Vehicle Fuels in China," Appl. Energy, 90, 218-224(2012). https://doi.org/10.1016/j.apenergy.2011.03.032
  24. Granovskii, M., Dincer, I. and Rosen, M. A., "Life Cycle Assessment of Hydrogen Fuel Cell and Gasoline Vehicles," Int. J. Hydrog. Energy, 31, 337-352(2006). https://doi.org/10.1016/j.ijhydene.2005.10.004
  25. http://www.kma.go.kr/weather/climate/past_tendays.jsp.
  26. http://www.homerenergy.com/software.html.
  27. http://www.jeju.go.kr/contents/index.php?mid=010905.
  28. Hiendro, A., Kurnianto, R., Rajagukguk, M., Simanjuntak, Y. M. and Junaidi, "Techno-economic Analysis of Photovoltaic/wind Hybrid System for Onshore/remote Area in Indonesia," Energy, 59, 652-657(2013). https://doi.org/10.1016/j.energy.2013.06.005
  29. Alphen, K., Sark, W. G. J. H. M. and Hekkert, M. P., "Renewable Energy Technologies in the Maldives-determining the Potential," Renew. Sust. Energ. Rev., 11, 1650-1674(2007). https://doi.org/10.1016/j.rser.2006.02.001
  30. Gonder, A. and Simpson, A., "Measuring and Reporting Fuel Economy of Plug-in Hybrid Electric Vehicles," NREL Report: NREL/ CP-540-40377(2008).
  31. Kim, J., Lee, Y. and Moon, I., "Optimization of a Hydrogen Supply Chain Under Demand Uncertainty," Int. J. Hydrog. Energy, 33, 4715-4729(2008). https://doi.org/10.1016/j.ijhydene.2008.06.007
  32. http://www.ktdb.go.kr/web/guest/125.
  33. Offer, G. J., Howey, D., Contestabile, M., Clague, R. and Brandon, N. P., "Comparative Analysis of Battery Electric, Hydrogen Fuel Cell and Hybrid Vehicles in a Future Sustainable Road Transport System," Energy Policy, 38, 24-29(2010). https://doi.org/10.1016/j.enpol.2009.08.040
  34. https://www.iea.org/techno/essentials.htm.
  35. Davis, S. C., Diegel, S. W. and Boundy, R. G., "Transportation Energy Data Book," U.S. Department of Energy, ORNL-6987 (2012).
  36. http://www.jeju.go.kr/contents/index.php?mid=010905.
  37. Türkay, B. E. and Telli, A. Y., "Economic Analysis of Standalone and Grid Connected Hybrid Energy Systems," Renew. Energy, 36, 1931-1943(2011). https://doi.org/10.1016/j.renene.2010.12.007
  38. Li, C., Ge, X., Zheng, Y., Xu, C., Ren, Y., Song, C. and Yang, C., "Techno-economic Feasibility Study of Autonomous Hybrid Wind/ PV/battery Power System for a Household in Urumqi, China," Energy, 55, 263-272(2013). https://doi.org/10.1016/j.energy.2013.03.084
  39. Feng, Z., Wang, J. and Zhang, W., "ORNL Researchers Design Lowcost Hydrogen Storage Systems for Stationary Applications," Oak Ridge National Laboratory Fact Sheet (2011).
  40. Simbeck, D. R. and Chang, E., "Hydrogen Supply: Cost Estimate for Hydrogen Pathways-Scoping Analysis," NREL Report: SR-540-32525(2002).

Cited by

  1. An Experimental Study of Effect on Characteristics of Exhaust Emissions by Changing for Fuel Injection Timing and Ratio of Soybean-Oil in Diesel Engines vol.25, pp.5, 2015, https://doi.org/10.9726/kspse.2021.25.5.029