DOI QR코드

DOI QR Code

Optimized Bankruptcy Prediction through Combining SVM with Fuzzy Theory

퍼지이론과 SVM 결합을 통한 기업부도예측 최적화

  • 최소윤 (국민대학교 비즈니스IT전문대학원) ;
  • 안현철 (국민대학교 비즈니스IT전문대학원)
  • Received : 2015.01.18
  • Accepted : 2015.03.20
  • Published : 2015.03.28

Abstract

Bankruptcy prediction has been one of the important research topics in finance since 1960s. In Korea, it has gotten attention from researchers since IMF crisis in 1998. This study aims at proposing a novel model for better bankruptcy prediction by converging three techniques - support vector machine(SVM), fuzzy theory, and genetic algorithm(GA). Our convergence model is basically based on SVM, a classification algorithm enables to predict accurately and to avoid overfitting. It also incorporates fuzzy theory to extend the dimensions of the input variables, and GA to optimize the controlling parameters and feature subset selection. To validate the usefulness of the proposed model, we applied it to H Bank's non-external auditing companies' data. We also experimented six comparative models to validate the superiority of the proposed model. As a result, our model was found to show the best prediction accuracy among the models. Our study is expected to contribute to the relevant literature and practitioners on bankruptcy prediction.

기업부도예측은 재무 분야에 있어 중요한 연구주제 중 하나로 1960년대 이후부터 꾸준히 연구되어져 왔다. 국내의 경우, IMF 사태 이후 기업부도예측에 관한 중요성이 강조되고 있다. 이에 본 연구에서는 보다 정확한 기업부도예측을 위해 높은 예측력과 동시에 과적합화의 문제를 해결한다고 알려진 SVM(Support Vector Machine)을 기반으로 퍼지이론(fuzzy theory)을 활용해 입력변수를 확장하고, 유전자 알고리즘(GA, Genetic Algorithm)을 이용해 유사 혹은 유사최적의 입력변수집합과 파라미터를 탐색하는 새로운 융합모형을 제시한다. 제안모형의 유용성을 검증하기 위하여 H은행의 비외감 중공업 기업 데이터를 이용하여 실험을 수행하였으며, 비교모형으로는 로짓분석, 판별분석, 의사결정나무, 사례기반추론, 인공신경망, SVM을 선정하였다. 실험결과, 제안모형이 모든 비교모형들에 비해 우수한 예측력을 보이는 것으로 나타났다. 본 연구는 우수한 예측 성능을 가진 다기법 융합 모형을 새롭게 제안하여, 부도예측 분야에 학술적, 실무적으로 기여할 수 있을 것으로 기대된다.

Keywords

References

  1. J. L. Bellovary, D. E., Giacomino, & M. D. Akers, A review of bankruptcy prediction studies: 1930 to present. Journal of Financial Education, pp. 1-42, 2007.
  2. S. Kim, C. S. Park, & S. M. Jeon, Default Decisions of FIs and Endogeneity Problems in Default Prediction. Journal of Business Research, Vol. 26, No. 1, pp. 99-132, 2011.
  3. J. M. Park, Bankruptcy Prediction using Support Vector Machine. Korea Advanced Institute of Science and Technology, Master's Thesis, 2003.
  4. W. H. Beaver, Financial ratios as predictors of failure. Journal of Accounting Research, Vol. 4, pp. 71-111, 1966. https://doi.org/10.2307/2490171
  5. E. I. Altman, Financial ratios, discriminant analysis and the prediction of corporate bankruptcy. The journal of finance, Vol. 23, No. 4, pp. 589-609, 1968. https://doi.org/10.1111/j.1540-6261.1968.tb00843.x
  6. J. A. Ohlson, Financial ratios and the probabilistic prediction of bankruptcy. Journal of accounting research, pp. 109-131, 1980.
  7. M. E. Zmijewski, Methodological issues related to the estimation of financial distress predictionmodels. Journal of Accounting Research, pp. 59-82, 1984.
  8. R. O. Edmister, An empirical test of financial ratio analysis for small business failure prediction. Journal of Financial and Quantitative Analysis, Vol. 7, No. 2, pp. 1477-1493, 1972. https://doi.org/10.2307/2329929
  9. M. D. Odom, & R. Sharda, A neural network model for bankruptcy prediction. In proceedings of the International Joint Conference on Neural networks, Vol. 2, pp. 163-168, 1990.
  10. K. Y. Tam, & M. Y. Kiang, Managerial applications of neural networks: the case of bank failure predictions. Management science, Vol. 38, No. 7, pp. 926-947, 1992. https://doi.org/10.1287/mnsc.38.7.926
  11. K. C. Lee, A Comparative Study on the Bankruptcy Prediction Power of Statistical Model and AI Models: MDA, Inductive Learning, Neural Network. Journal of The Korean Operations Research and Management Science Society , Vol. 18, No. 2, pp. 57-81, 1993.
  12. K. Y. Kim, G. R. Lee, & S. W. Lee, A Comparative Analysis of Artificial Intelligence System and Ohlson model for IPO firm's Stock Price Evaluation. Journal of Digital Convergence, Vol. 11, No. 5, pp. 145-158, 2013. https://doi.org/10.14400/JDPM.2013.11.12.145
  13. K. K. Seo, Development of a Sales Prediction Model of Electronic Appliances using Artificial Neural Networks. Journal of Digital Convergence, Vol. 12, No. 11, pp. 209-214, 2014. https://doi.org/10.14400/JDC.2014.12.11.209
  14. C. Serrano-Cinca, Self organizing neural networks for financial diagnosis. Decision Support Systems, Vol. 17, No. 3, pp. 227-238, 1996. https://doi.org/10.1016/0167-9236(95)00033-X
  15. J. Yang, & V. Honavar, Feature subset selection using a genetic algorithm. Computer Science Technical Reports, Paper 156, 1997.
  16. K. S. Shin, & Y. J. Lee, A genetic algorithm application in bankruptcy prediction modeling. Expert Systems with Applications, Vol. 23, No. 3, pp. 321-328, 2002. https://doi.org/10.1016/S0957-4174(02)00051-9
  17. K. S. Shin, T. S. Lee, & H. J. Kim, An application of support vector machines in bankruptcy prediction model. Expert Systems with Applications, Vol. 28, No. 1, pp. 127-135, 2005. https://doi.org/10.1016/j.eswa.2004.08.009
  18. H. Ahn, & K. J. Kim, Bankruptcy prediction modeling with hybrid case-based reasoning and genetic algorithms approach. Applied Soft Computing, Vol. 9, No. 2, pp. 599-607, 2009. https://doi.org/10.1016/j.asoc.2008.08.002
  19. L. A. Zadeh, Fuzzy sets. Information and Control, Vol. 8, No. 3, pp. 338-353, 1965. https://doi.org/10.1016/S0019-9958(65)90241-X
  20. S. H. Lee, K. I. Moon, & S. J. Lee, Application of Fuzzy Logic in Scenario Based Language Learning. Journal of Digital Convergence, Vol. 11, No. 2, pp. 221-228, 2013. https://doi.org/10.14400/JDPM.2013.11.2.221
  21. L. A. Zadeh, Fuzzy sets as a basis for a theory of possibility. Fuzzy Sets and Systems, Vol. 1, pp. 3-28, 1978. https://doi.org/10.1016/0165-0114(78)90029-5
  22. M. Kim, The Application of Knowledge Integration Using Fuzzy Logic and Genetic Algorithms to Financial Market. Korea Advanced Institute of Science and Technology, Doctoral Thesis, 2004.
  23. S. K. Pal, & P. K. Pramanik, Fuzzy measures in determining seed points in clustering. Pattern Recognition Letters, Vol. 4, No. 3, pp. 159-164, 1986. https://doi.org/10.1016/0167-8655(86)90014-0
  24. V. Vapnik, Statistical learning theory. Wiley, New York, 1998.
  25. M. A. Hearst, S. T. Dumais, E. Osman, J. Platt, & B. Scholkopf, Support vector machines. IEEE Intelligent Systems and Their Applications, Vol. 13, No. 4, pp. 18-28, 1998. https://doi.org/10.1109/5254.708428
  26. H. Ahn, K. J. Kim, & I. Han, Purchase Prediction Model using the Support Vector Machine. Journal of Intelligence and Information Systems, Vol. 11, No. 3, pp. 69-81, 2005.
  27. S. W. Kim, & H. Ahn, Development of an Intelligent Trading System Using Support Vector Machines and Genetic Algorithms. Journal of Intelligence and Information Systems, Vol. 16, No. 1, pp. 71-92, 2010.
  28. H. Ahn, & K. J. Kim, Corporate Bond Rating Using Various Multiclass Support Vector Machines. Asia Pacific Journal of Information Systems, Vol. 19, No. 2, pp. 157-178, 2009.
  29. D. E. Goldberg, Genetic Algorithms in Search, Optimization, and Machine Learning, Addison-Wesley Longman Publishing Co., Inc. Boston, MA, USA, 1989.
  30. Y. Cha, G. Lee, J. Lee, D. Y. Wie, Optimization of the Distribution Plan and Multi-product Capacity using Genetic Algorithm. Journal of Digital Convergence, Vol. 12, No. 6, pp. 125-134, 2014. https://doi.org/10.14400/JDC.2014.12.6.125
  31. F. E. Tay, & L. Cao, Application of support vector machines in financial time series forecasting. Omega, Vol. 29, No. 4, pp. 309-317, 2001. https://doi.org/10.1016/S0305-0483(01)00026-3
  32. C. C. Chang, & C. J. Lin, LIBSVM: a library for support vector machines. ACM Transactions on Intelligent Systems and Technology, Vol. 2, No. 3, pp. 27:1-27:27, 2011. Software available at http://www.csie.ntu.edu.tw/-cjlin/libsvm.
  33. C. H. Jeon, Data Mining Techniques. Hannarae Publishing Co., Seoul, 2012.

Cited by

  1. Classification of Epileptic Seizure Signals Using Wavelet Transform and Hilbert Transform vol.14, pp.4, 2016, https://doi.org/10.14400/JDC.2016.14.4.277
  2. An Automatic Signature Verification Algorithm for Smart Devices vol.20, pp.10, 2015, https://doi.org/10.9708/jksci.2015.20.10.015
  3. A Hybrid Under-sampling Approach for Better Bankruptcy Prediction vol.21, pp.2, 2015, https://doi.org/10.13088/jiis.2015.21.2.173