DOI QR코드

DOI QR Code

QUALITATIVE UNCERTAINTY PRINCIPLES FOR THE INVERSE OF THE HYPERGEOMETRIC FOURIER TRANSFORM

  • Mejjaoli, Hatem (Department of Mathematics College of Sciences Taibah University)
  • 투고 : 2014.06.19
  • 심사 : 2015.03.15
  • 발행 : 2015.03.30

초록

In this paper, we prove an $L^p$ version of Donoho-Stark's uncertainty principle for the inverse of the hypergeometric Fourier transform on $\mathbb{R}^d$. Next, using the ultracontractive properties of the semigroups generated by the Heckman-Opdam Laplacian operator, we obtain an $L^p$ Heisenberg-Pauli-Weyl uncertainty principle for the inverse of the hypergeometric Fourier transform on $\mathbb{R}^d$.

키워드

참고문헌

  1. J.-PH. Anker, F. Ayadi and M. Sifi, Opdam function: Product formula and convolution structure in dimention, Adv. Pure Appl. Math. 3 (1) (2012), 11-44.
  2. M. Benedicks, On Fourier transforms of function supported on sets of finite Lebesgue measure, J. Math. Anal. Appl. 106 (1985), 180-183. https://doi.org/10.1016/0022-247X(85)90140-4
  3. A. Beurling, The collect works of Arne Beurling, Birkhauser. Boston, 1989, 1-2.
  4. A. Bonami, B. Demange and P. Jaming, Hermite functions and uncertainty principles for the Fourier and the windowed Fourier transforms, Rev. Mat. Iberoamericana 19 (2002), 22-35.
  5. I. Cherednik, A unification of Knizhnik-Zamolodchnikove quations and Dunkl operators via affine Hecke algebras, Invent. Math. 106 (1991), 411-432. https://doi.org/10.1007/BF01243918
  6. P. Ciatti, F. Ricci, M. Sundari, Heisenberg Pauli Weyl uncertainty inequalities on Lie groups of polynomial growth, Adv. in Math. 215 (2007), 616-625. https://doi.org/10.1016/j.aim.2007.03.014
  7. M.G. Cowling and J.F. Price, Generalizations of Heisenberg inequality, Lecture Notes in Math., 992. Springer, Berlin (1983), 443-449.
  8. D.L. Donoho and P.B. Stark, Uncertainty principles and signal recovery, SIAM J. Appl. Math. 49 (1989), 906-931. https://doi.org/10.1137/0149053
  9. L. Gallardo and K. Trimeche, An $L^p$ version of Hardy's theorem for the Dunkl transform, J. Austr. Math. Soc. 77 (3) (2004), 371-386. https://doi.org/10.1017/S1446788700014518
  10. L. Gallardo and K. Trimeche, Positivity of the Jacobi-Cherednik intertwining operator and its dual, Adv. Pure Appl. Math. 1 (2010) (2), 163-194. https://doi.org/10.1515/APAM.2010.011
  11. G.H. Hardy, A theorem concerning Fourier transform, J. London Math. Soc. 8 (1933), 227-231.
  12. G.J. Heckmann and E.M. Opdam, Root systems and hypergeometric functions I. Compositio Math. 64 (1987), 329-352.
  13. L. Hormander, A uniqueness theorem of Beurling for Fourier transform pairs, Ark. For Math. 2 (1991), 237-240.
  14. T. Kawazoe, and H. Mejjaoli, Uncertainty principles for the Dunkl transform, Hiroshima Math. J. 40 (2) (2010), 241-268.
  15. H.J. Landau and H.O. Pollak, Prolate spheroidal wave functions, Fourier analysis and uncertainty II, Bell. Syst. Tech. J. 40 (1961), 65-84. https://doi.org/10.1002/j.1538-7305.1961.tb03977.x
  16. R. Ma, Heisenberg inequalities for Jacobi transforms, J. Math. Anal. Appl. 332:1 (2007), 155-163. https://doi.org/10.1016/j.jmaa.2006.09.044
  17. H. Mejjaoli, Qualitative uncertainty principles for the Opdam-Cherednik transform, Integral Transforms Spec. Funct. 25 (7) (2014), 528-546. https://doi.org/10.1080/10652469.2014.885964
  18. H. Mejjaoli and K. Trimeche, Characterization of the support for the hypergeometric Fourier transform of the W-invariant functions and distributions on ${\mathbb{R}}^d$ and Roes theorem, Journal of Inequalities and Applications (2014), 2014:99. https://doi.org/10.1186/1029-242X-2014-99
  19. H. Mejjaoli and K. Trimeche, Qualitative uncertainty Principles for the generalized Fourier transform associated to a Cherednik type operator on the real line, To appear in Bulletin of the Malaysian Mathematical Sciences Society.
  20. A. Miyachi, A generalization of theorem of Hardy, Harmonic Analysis Seminar held at Izunagaoka, Shizuoka-Ken, Japan 1997, 44-51.
  21. G.W. Morgan, A note on Fourier transforms, J. London Math. Soc. 9 (1934), 188-192.
  22. G. Olafsson an A. Pasquale Ramanujan's master theorem for hypergeometric Fourier transform on root systems Journal of Fourier Analysis and Applications 19 (6) (2013), 1150-1183. https://doi.org/10.1007/s00041-013-9290-5
  23. E.M. Opdam, Harmonic analysis for certain representations of graded Hecke algebras, Acta. Math. 175 (1995), 75-121. https://doi.org/10.1007/BF02392487
  24. E.M. Opdam, Lecture notes on Dunkl operators for real and complex reflection groups, Mem. Math. soc. Japon 8 (2000).
  25. M. Rosler and M. Voit, An uncertainty principle for Hankel transforms, Proc. Amer. Math. Soc. 127:1 (1999), 183-194. https://doi.org/10.1090/S0002-9939-99-04553-0
  26. B. Schapira, Contributions to the hypergeometric function theory of Heckman and Opdam:sharpe stimates, Schwartz spaces, heat kernel. Geom. Funct. Anal. 18, (2008), vol.1, 222-250. https://doi.org/10.1007/s00039-008-0658-7
  27. D. Slepian and H.O. Pollak, Prolate spheroidal wave functions, Fourier analysis and uncertainty I, Bell. Syst. Tech. J. 40 (1961), 43-63. https://doi.org/10.1002/j.1538-7305.1961.tb03976.x
  28. K. Trimeche, Harmonic analysis associated with the Cherednik operators and the Heckam-Opdam theory, Adv. Pure Appl. Math. 2 (2011), 23-46.
  29. K. Trimeche, The positivity of the hypergeometric translation operators associated to the Cherednik operators and the Heckman-Opdam theory attached to the root systems of type $B_2$ and $C_2$, Korean J. Math. 22 (2014) (1), 1-28. https://doi.org/10.11568/kjm.2014.22.1.1
  30. K. Trimeche, Hypergeometric convolution structure on $L^p$-spaces and applications for the Heckman-Opdam theory, Preprint (2014).
  31. S.B. Yakubivich, Uncertainty principles for the Kontorovich-Lebedev transform, Math. Model. Anal. 13 (2) (2008), 289-302. https://doi.org/10.3846/1392-6292.2008.13.289-302