DOI QR코드

DOI QR Code

Behavior of Liquid Droplet Driven by Capillarity Force Imbalance on Horizontal Surface Under Various Conditions

다양한 조건하에서 모세관력 불균형에 의해 구동되는 수평 표면 위의 액적 거동

  • 명현국 (국민대학교 기계공학과) ;
  • 권영후 (국민대학교 기계공학과)
  • Received : 2014.11.04
  • Accepted : 2015.01.22
  • Published : 2015.04.01

Abstract

The present study aims to numerically investigate the behavior of liquid droplet driven by capillarity force imbalance on horizontal surfaces ranging from hydrophilic to hydrophobic, under various conditions. The droplet behavior has been simulated using an in-house solution code(PowerCFD), which employs an unstructured cell-centered method based on a conservative pressure-based finite-volume method with interface capturing method(CICSAM) in a volume of fluid(VOF) scheme for phase interface capturing. The detailed droplet behavior was obtained under various conditions for droplets with different initial shapes, contact angles and surface tension forces(or Bond number). The mechanism of droplet transport was examined using the numerical results on the droplet shapes.

본 연구는 다양한 조건하에서 모세관력 불균형에 의해 구동되는 수평 표면 위의 액적 거동을 수치해석적으로 연구한 것이다. 액적 거동은 자체개발 코드(PowerCFD)를 사용하여 수치해석하였다. 수치해석에 사용된 코드는 보존적인 압력기반 유한체적방법에 기초한 비정렬 셀 중심 방법 및 VOF 방법에 체적포착법인 CICSAM을 채용하고 있다. 상세한 액적 거동이 다양한 초기 액적형상, 접촉각 및 표면장력(또는 Bond 수)의 조건하에서 얻어졌다. 또한 액적 이송 메커니즘이 액적 형상에 대한 수치해석 결과로부터 검토되었다.

Keywords

References

  1. Rein, M., 1993, "Phenomena of Liquid Drop Impact on Solid and Liquid Surfaces," Fluid Dyn. Res. Vol. 12, pp. 61-93. https://doi.org/10.1016/0169-5983(93)90106-K
  2. Yarin, A. L., 2005, "Drop Impact Dynamic: Splashing, Spreading, Receding, Bouncing," Annual Reviews of Fluid Mechanics, Vol. 38, pp. 159-192.
  3. Clanet, C., Beguin, C., Richard, D. and Quere, D., 2004, "Maximal Deformation of an Impacting Drop," Journal of Fluid Mechanics, Vol. 517, pp. 199-208. https://doi.org/10.1017/S0022112004000904
  4. Scheller, B. L. and Bousfield, D. W., 1995, "Newtonian Drop Impact with a Solid Surface," AIChE Journal, Vol. 41, No. 6, pp. 1357-1367. https://doi.org/10.1002/aic.690410602
  5. Schiaffino, S. and Sonin, A. A., 1997, "Molten Droplet Deposition and Solidification at Low Weber Numbers," Physics of Fluids, Vol. 9, No. 11, pp. 3172-3187. https://doi.org/10.1063/1.869434
  6. Gunjal, P. R., Ranade, V. V. and Chaudhari, R. V., 2005, "Dynamics of Drop Impact on Solid Surface: Experiments and VOF Simulations," AIChE Journal, Vol. 51, No. 1, pp. 59-78. https://doi.org/10.1002/aic.10300
  7. Sikalo, S., Sikalo, S., Wilhelm, H.-D., Roisman, I. V., Jakirlic, S. and Tropea, C., 2005, "Dynamic Contact Angle of Spreading Droplets: Experiments and Simulations," Physics of Fluids, Vol. 17, No. 6, pp. 2103-1-138.
  8. Afkhami, S. and Bussmann, M., 2006, "Drop Impact Simulation with a Velocity-Dependent Contact Angle," Proc. of ILASS Americas 19th Annual Conference on Liquid Atomization and Spray System, Toronto, Canada.
  9. Blackbill, J. U., Kothe, C. and Zamach, C., 1992, "A Continuum Method for Modeling Surface Tension," J. Comput. Phys., Vol. 100, pp. 335-354. https://doi.org/10.1016/0021-9991(92)90240-Y
  10. Myong, H. K., 2012, "Numerical Study on Multiphase Flows Induced by Wall Adhesion," Trans. Korean Soc. Mech. Eng. B, Vol. 36, No. 7, pp. 721-730. https://doi.org/10.3795/KSME-B.2012.36.7.721
  11. Myong, H. K. and Kim, J. E., 2006, "A Study on an Interface Capturing Method Applicable to Unstructured Meshes for the Analysis of Free Surface Flow," KSCFE J. of Computational Fluids Engineering, Vol. 11, No. 4, pp. 14-19.
  12. Myong, H. K., 2008, "Comparative Study on High Resolution Schemes in Interface Capturing Method Suitable for Unstructured Meshes," Trans. Korean Soc. Mech. Eng. B, Vol. 32, No. 1, pp. 23-29. https://doi.org/10.3795/KSME-B.2008.32.1.023
  13. Myong, H. K., 2009, "Numerical Simulation of Multiphase Flows with Material Interface due to Density Difference by Interface Capturing Method," Trans. Korean Soc. Mech. Eng. B, Vol. 33, No. 6, pp. 443-453. https://doi.org/10.3795/KSME-B.2009.33.6.443
  14. Myong, H. K., 2011, "Numerical Simulation of Surface Tension-Dominant Multiphase Flows with Volume Capturing Method and Unstructured Grid System," Trans. Korean Soc. Mech. Eng. B, Vol. 35, No. 7, pp. 723-733. https://doi.org/10.3795/KSME-B.2011.35.7.723
  15. Ubbink, O., 1997, Numerical Prediction of Two Fluid Systems with Sharp Interface, PhD Thesis, University of London.
  16. Bussmann, M., Mostaghimi, J. and Chandra, S., 1999, "On a Three-Dimensional Volume Tracking Model of Droplet Impact," Physics of Fluids, Vol. 11, No. 6, pp. 1406-1417. https://doi.org/10.1063/1.870005
  17. Lunkad, S. F., Buwa, V. V. and Nigam, K. D. P., 2007, "Numerical Simulations of Drop Impact and Spreading on Horizontal and Inclined Surfaces," Chemical Engineering Sciences, Vol. 62, pp. 7214-7224. https://doi.org/10.1016/j.ces.2007.07.036

Cited by

  1. Transport Mechanism of an Initially Spherical Droplet on a Combined Hydrophilic/Hydrophobic Surface vol.39, pp.11, 2015, https://doi.org/10.3795/KSME-B.2015.39.11.871