Physiological Characteristics and Immunomodulation Activity of Lactobacillus fermentum 450 isolated from Raw Milk

원유에서 분리한 Lactobacillus fermentum 450의 생리적 특성과 면역활성

  • Received : 2015.04.27
  • Accepted : 2015.05.17
  • Published : 2015.06.30

Abstract

The aim of this study was to investigate the physiological characteristics and immunomodulatory activity of Lactobacillus fermentum 450 isolated from raw milk. L. fermentum 450 showed optimum growth at $40^{\circ}C$ and exhibited immunomodulatory effects on $interleukin-1{\alpha}$, tumor necrosis $factor-{\alpha}$, and nitrous oxide at concentrations of >2,500 pg/mL, >2,000 pg/mL, and $11.55{\pm}2.95{\mu}M$, respectively. Of the 16 antibiotics tested, L. fermentum 450 exhibited the highest sensitivity to rifampicin, followed by penicillin-G, and the highest resistance to kanamycin, followed by neomycin and polymyxin B. The strain showed high acid phosphatase activity and was comparatively tolerant to bile juice and acid. Moreover, the strain displayed high resistance to Salmonella Typhimurium (63.86%). These results demonstrate that L. fermentum 450 has potential for use as a probiotic with immunomodulatory activity.

본 연구는 원유로부터 면역증진 젖산균을 분리 및 동정하고, 이 균주의 생리적 특성을 규명하여 상업적으로의 이용가능성을 검토하고자 실시하였다. 이를 위해 Modified MRS 분별배지를 사용하여 노란색 집락을 형성하는 균주를 대상으로 면역활성이 높은 균주를 선발한 결과, D205 균주가 최종 선발되었다. D205 균주는 $IL-1{\alpha}$, $TNF-{\alpha}$, NO 값이 각각 2,500pg 이상/mL, 2,000 pg 이상/mL, $11.55{\pm}2.95{\mu}M$로 나타났으며, 동정결과 Lactobacillus fermentum으로 판명되었고, Lactobacillus fermentum 450으로 명명하였다. Lactobacillus fermentum 450의 최적 생장 온도는 $40^{\circ}C$이었으며, 답즙산과 산성의 pH에서 모두 우수한 생존력을나타내었다. 효소활성은 leucine arylamidase와 acid phosphatase가 비교적 높게 나타났다. 항생제 내성 실험 결과, kanamycin, neomycin, polymyxin B에 내성이 있는 반면 novobiocin에 감수성을 나타냈으며, Salmonella Typhimurium에 대해 63.86%의 억제 효과를 지니고 있으나, Escherichia coli와 Staphylococcus aureus에 대해서는 항균력이 거의 없는 것으로 나타났다.

Keywords

References

  1. Arunachalam, K., Gill, H. S. and Chandra, R. K. 2000. Enhancement of natural immune function by dietary consumption of Bifidobacterium lactis (HN019). Eur. J. Clin. Nutr. 54: 263-267. https://doi.org/10.1038/sj.ejcn.1600938
  2. Bao, Y., Zhang, Y., Zhang, Y., Liu, Y., Wang, S., Dong, X., Wang, Y. and Zhang, H. 2010. Screening of potential probiotic properties of Lactobacillus fermentum isolated from traditional dairy products. Food Control 21(5):695-701. https://doi.org/10.1016/j.foodcont.2009.10.010
  3. Booth, I. R. 1985. Regulation of cytoplasmic pH in bacteria. Microbiol. Rev. 49:359-378.
  4. Borriello, S. P., Hammes, W. P., Holzapfel, W., Marteau, P., Schrezenmeir, J., Vaara, M. and Valtonen, V. 2003. Safety of probiotics that contain Lactobacillus or Bifidobacteria. Clin. Infect. Dis. 36:775-780. https://doi.org/10.1086/368080
  5. Cho, M. K., Kim, K., Kim, C. H. and Kim, K. Y. 2000. Isolation and characterization of Lactobacillus fermentum YL-3 as a poultry probiotics. Kor. J. Appl. Microbial. Biotechnol. 28(5):279-284.
  6. Cho, S. A., Kim, K. S., Do, J. R., Kim, S. H. and Lim, S. D. 2010. Physiological characteristics and immunomodulating activity of Streptococcus macedonicus LC743 isolated from raw milk. Korean J. Food Sci. Ani. Resour. 30(6):957-965. https://doi.org/10.5851/kosfa.2010.30.6.957
  7. Clark, P. A., Cotton, L. N. and Martin, J. H. 1993. Selection of bifidobacteria for use as dietary adjuncts in cultured dairy foods: II-Tolerance to simulated pH of human stomachs. Cul. Dairy Prod. J. 28:11-14.
  8. Gill, H. S. 2003. Probiotics to enhance anti-infective defences in the gastrointestinal tract. Best Prac. Res. CI. EM. 17(5): 755-773. https://doi.org/10.1016/S1521-6918(03)00074-X
  9. Gilliand, S. E. and Speck, M. L. 1977. Deconjugation of bile acids by intestinal lactobacilli. Appl. Environ. Micobiol. 33:15-18.
  10. Gilliland, S. E. and Walker, D. K. 1990. Factors to consider when selecting a culture of Lactobacillus acidophilus as a dietary adjunct to produce a hypocholesterolemic effect in humans. J. Dairy Sci. 73:905-911. https://doi.org/10.3168/jds.S0022-0302(90)78747-4
  11. Gilliland, S. E., Staley, T. E. and Bush, L. J. 1984. Importance of bile tolerance of Lactobacillus acidophilus used as a dietary adjunct. J. Dairy Sci. 67:3045-3051. https://doi.org/10.3168/jds.S0022-0302(84)81670-7
  12. Hammes, W. P., Weiss, N. and Holzapfel, W. 1992. The genera Lactobacilli and Carnobacterium. pages 1563-1578 in The Prokaryotes. 2nd, Springer-Verlag, New York. USA.
  13. Havinaar, R., Brink, B. T. and Veid, J. H. J. I. 1992. Selection of strains for probiotic use. In Probiotics. Springer Netherlands. pp 209-224.
  14. Hirose, Y., Murosaki, S., Yamamoto, Y., Yoshikai, Y. and Tsuru, T. 2006. Daily intake of heat-killed Lactobacillus plantarum L-137 augments acquired immunity in healthy adults. J. Nutr. 36(12):3069-3073.
  15. Jacobsen, C. N., Nielsen, V. R., Hayford, A. E., Moller, P. L., Michaelsen, K. F., Paerregaard, A., Sandstrom, B., Tvede, M. and Jakobsen, M. 1999. Screening of probiotic activities of forty-seven strains of Lactobacillus spp. by in vitro techniques and evaluation of the colonization ability of five selected strains in humans. Appl. Environ. Microbiol. 65:4949-4956. https://doi.org/10.1128/AEM.65.11.4949-4956.1999
  16. Kim, C. 2009. Immunomodulatory effects of lactic acid bacteria and bioactive peptides derived from milk. Korean J. Dairy Sci. Tecnol. 27(1):37-43.
  17. Kim, S. Y., Shin, K. S., and Lee, H. 2004. Immunopotentiating activities of cellular components of Lactobacillus brevis FSB-1. J. Korean Soc. Food Sci. Nutr. 33(9):1552-1559. https://doi.org/10.3746/jkfn.2004.33.9.1552
  18. Larsen, A. G., Vogensen, F. K. and Josephsen, J. 1993. Antimicrobial activity of lactic acid bacteria isolated from sour doughs: Purification and characterization of bavaricin A, a bacteriocin produced by Lactobacillus bavaricus MI401. J. Appl. Bacteriol. 75:113-122. https://doi.org/10.1111/j.1365-2672.1993.tb02755.x
  19. Lee, N. K., Kim, T. H., Choi, S. Y. and Park, H. D. 2004. Identification and probiotic properties of Lactobacillus lactis NK24 isolation from jetgal, a Korean fermented food. Food Sci. Biotechnol. 13:417-420.
  20. Lim, S. D., Kim, K. S. and Do, J. R. 2011. Physiological characteristics and production of vitamin K2 by Lactobacillus fermentum LC272 isolated from raw milk. Korean J. Food Sci. Ani. Resour. 31:513-520. https://doi.org/10.5851/kosfa.2011.31.4.513
  21. Lin, W. H., Yu, B., Jang, S. H. and Tsen, H. Y. 2007. Different probiotic properties for Lactobacillus fermentum strains isolated from swine and poultry. Anaerobe 13(3):107-113. https://doi.org/10.1016/j.anaerobe.2007.04.006
  22. Makras, L., Triantafyllou, V., Fayol-Messaoudi, D., Adriany, T., Zoumpopoulou, G., Tsakalidou, E., Serivin, A. and De Vuyst, L. 2006. Kinetic analysis of the antibacterial activity of probiotic lactobacilli towards Salmonella enterica serovar Typhimurium reveals a role for lactic acid and other inhibitory compounds. Res. Microbiol. 157(3):241-247. https://doi.org/10.1016/j.resmic.2005.09.002
  23. Marin, M. L., Lee, J. H., Murtha, J., Ustunol, Z. and Pestka, J. J. 1997. Differential cytokine production in clonal macrophage and T-cell lines cultured with bifidobacteria. J. Dairy Sci. 80:2713-2720. https://doi.org/10.3168/jds.S0022-0302(97)76232-5
  24. Mathur, S. and Singh, R. (2005). Antibiotic resistance in food lactic acid bacteria-a review. Int. J. Food Microbiol. 105(3):281-295. https://doi.org/10.1016/j.ijfoodmicro.2005.03.008
  25. Mcdonald, L. C., Fleming, H. P. and Hassan, H. M. 1990. Acid tolerance of Leuconostoc mesenteroides and Lactobacillus casei. Appl. Environ. Microbial. 53:2124-2128.
  26. Parente, E. and Ricciardi, A. 1999. Production, recovery and purification of bacteriocins from lactic acid bacteria. Appl. Microbiol. Biotechnol. 52(5): 628-638. https://doi.org/10.1007/s002530051570
  27. Park, S. H., Kim, Y. A., Lee, D. K., Lee, S., Chung, M. J., Kang, B. Y., Kim, K. and Ha, N. J. 2007. Antibacterial activity and macrophage activation of lactic acid bacteria. J. Environ. Toxicol. 22(4):287-297. https://doi.org/10.1002/tox.20254
  28. Park, S. Y., Shim, H. Y., Kim, K. S. and Lim, S. D. 2013. Physiological characteristics and GABA production of Lactobacillus plantarum K74 isolated from kimchi. Korean J. Dairy Sci. Technol. 31(2):143-152.
  29. Perdigon, G., de Macias, M. E. N., Alvarez, S., Medici, M., Oliver, G., de Ruiz, H. and Pesce, A. 1986a. Effect of a Mixture of Lactobacillus casei and Lactobacillus acidophilus administered orally on the immune system in mice. J. Food Prot. 49(12):986-993. https://doi.org/10.4315/0362-028X-49.12.986
  30. Perdigon, G., de Macias, M. E., Alvarez, S., Oliver, G., and de Ruiz Holgado, A. A. 1986b. Effect of perorally administered lactobacilli on macrophage activation in mice. Infect. Immunity 53(2):404-410.
  31. Reid, G. and Burton, J. 2002. Use of Lactobacillus to prevent infection by pathogenic bacteria. Microbes Infect. 4(3):319-324. https://doi.org/10.1016/S1286-4579(02)01544-7
  32. Saarela, M., Mogensen, G., Fonden, R., Matto, J. and Mattila-Sandholm, T. 2000. Probiotic bacteria: Safety, functional and technological properties. J. Biotechnol. 84:197-215. https://doi.org/10.1016/S0168-1656(00)00375-8
  33. Sanders, M. E. 1999. Probiotics. Food Technol. 53(11):67-77.
  34. Sanni, A. I., Morlon-Guyot, J. and Guyot, J. P. 2002. New efficient amylase-producing strains of Lactobacillus plantarum and L. fermentum isolated from different Nigerian traditional fermented foods. Int. J. Food Microbiol. 72(1):53-62. https://doi.org/10.1016/S0168-1605(01)00607-9
  35. Seo, J. H. and Lee, H. 2007. Characteristics and immunomodulating activity of lactic acid bacteria for the potential probiotics. Korean J. Food Sci. Technol. 39(6):681-687.
  36. Strompfova, V., Marciňakova, M., Simonova, M., Bogovic-Matijasic, B. and Laukova, A. 2006. Application of potential probiotic Lactobacillus fermentum AD1 strain in healthy dogs. Anaerobe 12(2):75-79. https://doi.org/10.1016/j.anaerobe.2005.12.001
  37. Zoumpopoulou, G., Foligne, B., Christodoulou, K., Grangette, C., Pot, B. and Tsakalidou, E. 2008. Lactobacillus fermentum ACA-DC 179 displays probiotic potential in vitro and protects against trinitrobenzene sulfonic acid (TNBS)-induced colitis and Salmonella infection in murine models. Int. J. Food Microbiol. 121(1):18-26. https://doi.org/10.1016/j.ijfoodmicro.2007.10.013