DOI QR코드

DOI QR Code

Comparative evaluation of biphasic calcium phosphate and biphasic calcium phosphate collagen composite on osteoconductive potency in rabbit calvarial defect

  • Lee, Eun-Ung (Department of Periodontology, Research Institute for Periodontal Regeneration, College of Dentistry, Yonsei University) ;
  • Kim, Dong-Ju (Department of Periodontology, Research Institute for Periodontal Regeneration, College of Dentistry, Yonsei University) ;
  • Lim, Hyun-Chang (Department of Periodontology, Research Institute for Periodontal Regeneration, College of Dentistry, Yonsei University) ;
  • Lee, Jung-Seok (Department of Periodontology, Research Institute for Periodontal Regeneration, College of Dentistry, Yonsei University) ;
  • Jung, Ui-Won (Department of Periodontology, Research Institute for Periodontal Regeneration, College of Dentistry, Yonsei University) ;
  • Choi, Seong-Ho (Department of Periodontology, Research Institute for Periodontal Regeneration, College of Dentistry, Yonsei University)
  • Received : 2014.11.03
  • Accepted : 2014.12.29
  • Published : 2015.03.31

Abstract

Background: The aim of this study was to determine the osteoconductivity of biphasic calcium phosphate collagen composite (BCPC) in rabbit calvarial defect model by comparing with biphasic calcium phosphate (BCP). Four 8 mm diameter bicortical calvarial defects were made in ten rabbits. Each of the defects was randomly assigned and filled with 1) collagen sponge, 2) BCP, 3) BCPC, and 4) nothing as control. The animals were sacrificed at either 2 weeks (n = 5) or 8 weeks (n = 5) healing period. Results: All groups showed wedge shaped new bone formation limited to the area of the defect margin at both healing periods. The amounts of new bone and defect closure were similar among all groups. In the control and collagen sponge group, the center of the defect was depressed by surrounding tissues. In contrast, in BCP and BCPC group, the center of the defect did not depressed and the grafted materials maintained the space. And the augmented area was significantly higher in BCP and BCPC group compared to the control and collagen sponge group at both healing periods (p < 0.05). Conclusions: The BCPC and BCP demonstrated proper space maintaining capacity and osteoconductive property, suggesting BCPC can be efficiently utilized in various clinical situations.

Keywords

Acknowledgement

Supported by : Ministry of Health & Welfare

References

  1. Erbe EM, Marx JG, Clineff TD, Bellincampi LD. "Potential of an ultraporous beta-tricalcium phosphate synthetic cancellous bone void filler and bone marrow aspirate composite graft,". Eur Spine J. 2001;Suppl 2:S141-6.
  2. Rosenberg E, Rose LF. Biologic and clinical considerations for autografts and allografts in periodontal regeneration therapy. Dent Clin North Am. 1998;42(3):467-90.
  3. Han T, Carranza Jr FA, Kenney EB. Calcium phosphate ceramics in dentistry: a review of the literature. J West Soc Periodontol Periodontal Abstr. 1984;32(3):88-108.
  4. Moskow BS, Lubarr A. Histological assessment of human periodontal defect after durapatite ceramic implant. Report of a case. J Periodontol. 1983;54(8):455-62. https://doi.org/10.1902/jop.1983.54.8.455
  5. Ellinger RF, Nery EB, Lynch KL. Histological assessment of periodontal osseous defects following implantation of hydroxyapatite and biphasic calcium phosphate ceramics: a case report. Int J Periodontics Restorative Dent. 1986;6(3):22-33.
  6. Dorozhkin SV. Bioceramics of calcium orthophosphates. Biomaterials. 2010;31(7):1465-85. https://doi.org/10.1016/j.biomaterials.2009.11.050
  7. Daculsi G, Passuti N, Martin S, Deudon C, Legeros RZ, Raher S. Macroporous calcium phosphate ceramic for long bone surgery in humans and dogs. Clinical and histological study. J Biomed Mater Res. 1990;24(3):379-96. https://doi.org/10.1002/jbm.820240309
  8. Nery EB, LeGeros RZ, Lynch KL, Lee K. Tissue response to biphasic calcium phosphate ceramic with different ratios of HA/beta TCP in periodontal osseous defects. J Periodontol. 1992;63(9):729-35. https://doi.org/10.1902/jop.1992.63.9.729
  9. Kim JW, Choi KH, Yun JH, Jung UW, Kim CS, Choi SH, et al. Bone formation of block and particulated biphasic calcium phosphate lyophilized with Escherichia coli-derived recombinant human bone morphogenetic protein 2 in rat calvarial defects. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2011;112(3):298-306. https://doi.org/10.1016/j.tripleo.2010.10.025
  10. Kim JW, Jung IH, Lee KI, Jung UW, Kim CS, Choi SH, et al. Volumetric bone regenerative efficacy of biphasic calcium phosphate-collagen composite block loaded with rhBMP-2 in vertical bone augmentation model of a rabbit calvarium. J Biomed Mater Res Part A. 2012;100(12):3304-13.
  11. Patino MG, Neiders ME, Andreana S, Noble B, Cohen RE. Collagen as an implantable material in medicine and dentistry. J Oral Implantol. 2002;28(5):220-5. https://doi.org/10.1563/1548-1336(2002)028<0220:CAAIMI>2.3.CO;2
  12. Twardowski T, Fertala A, Orgel JP, San Antonio JD. Type I collagen and collagen mimetics as angiogenesis promoting superpolymers. Curr Pharm Des. 2007;13(35):3608-21. https://doi.org/10.2174/138161207782794176
  13. Nasr HF, Aichelmann-Reidy ME, Yukna RA. "Bone and bone substitutes,". Periodontol 2000. 1999;19:74-86. https://doi.org/10.1111/j.1600-0757.1999.tb00148.x
  14. Postlethwaite AE, Seyer JM, Kang AH. Chemotactic attraction of human fibroblasts to type I, II, and III collagens and collagen-derived peptides. ProcNatl Acad Sci U S A. 1978;75(2):871-5. https://doi.org/10.1073/pnas.75.2.871
  15. Rothamel D, Schwarz F, Sager M, Herten M, Sculean A, Becker J. Biodegradation of differently cross-linked collagen membranes: an experimental study in the rat. Clin Oral Implants Res. 2005;16(3):369-78. https://doi.org/10.1111/j.1600-0501.2005.01108.x
  16. Schwarz F, Rothamel D, Herten M, Sager M, Becker J. Angiogenesis pattern of native and cross-linked collagen membranes: an immunohistochemical study in the rat. Clin Oral Implants Res. 2006;17(4):403-9. https://doi.org/10.1111/j.1600-0501.2005.01225.x
  17. Lynch MP, Stein JL, Stein GS, Lian JB. The influence of type I collagen on the development and maintenance of the osteoblast phenotype in primary and passaged rat calvarial osteoblasts: modification of expression of genes supporting cell growth, adhesion, and extracellular matrix mineralization. Exp Cell Res. 1995;216(1):35-45. https://doi.org/10.1006/excr.1995.1005
  18. Sela MN, Kohavi D, Krausz E, Steinberg D, Rosen G. Enzymatic degradation of collagen-guided tissue regeneration membranes by periodontal bacteria. Clin Oral Implants Res. 2003;14(3):263-8. https://doi.org/10.1034/j.1600-0501.2003.140302.x
  19. Fellah BH, Gauthier O, Weiss P, Chappard D, Layrolle P. Osteogenicity of biphasic calcium phosphate ceramics and bone autograft in a goat model. Biomaterials. 2008;29(9):1177-88. https://doi.org/10.1016/j.biomaterials.2007.11.034
  20. Fleckenstein KB, Cuenin MF, Peacock ME, Billman MA, Swiec GD, Buxton TB, et al. Effect of a hydroxyapatite tricalcium phosphate alloplast on osseous repair in the rat calvarium. J Periodontol. 2006;77(1):39-45. https://doi.org/10.1902/jop.2006.77.1.39
  21. Brodie JC, Merry J, Grant MH. The mechanical properties of calcium phospate ceramics modified by collagen coating and populated by osteoblasts. J Mater Sci Mater Med. 2006;17(1):43-8.
  22. Newman E, Turner AS, Wark JD. The potential of sheep for the study of osteopenia: current status and comparison with other animal models. Bone. 1995;16(4 Suppl):277S-84S. https://doi.org/10.1016/S8756-3282(95)80121-9
  23. Pripatnanont P, Nuntanaranont T, Vongvatcharanon S. Proportion of deproteinized bovine bone and autogenous bone affects bone formation in the treatment of calvarial defects in rabbits. Int J Oral Maxillofac Surg. 2009;38(4):356-62. https://doi.org/10.1016/j.ijom.2009.02.015
  24. Xu S, Lin K, Wang Z, Chang J, Wang L, Lu J, et al. Reconstruction of calvarial defect of rabbits using porous calcium silicate bioactive ceramics. Biomaterials. 2008;29(17):2588-96. https://doi.org/10.1016/j.biomaterials.2008.03.013
  25. Shand JM, Heggie AA, Holmes AD, Holmes W. Allogeneic bone grafting of calvarial defects: an experimental study in the rabbit. Int J Oral Maxillofac Surg. 2002;31(5):525-31. https://doi.org/10.1054/ijom.2002.0281
  26. Lundgren D, Nyman S, Mathisen T, Isaksson S, Klinge B. Guided bone regeneration of cranial defects, using biodegradable barriers: an experimental pilot study in the rabbit. J Cranio-maxillo-facial Surg. 1992;20(6):257-60. https://doi.org/10.1016/S1010-5182(05)80438-X
  27. Cavalcanti SC, Pereira CL, Mazzonetto R, de Moraes M, Moreira RW. Histological and histomorphometric analyses of calcium phosphate cement in rabbit calvaria. J Cranio-maxillo-facial Surg. 2008;36(6):354-9. https://doi.org/10.1016/j.jcms.2008.02.005
  28. Sohn JY, Park JC, Um YJ, Jung UW, Kim CS, Cho KS, et al. Spontaneous healing capacity of rabbit cranial defects of various sizes. J Periodontal Implant Sci. 2010;40(4):180-7. https://doi.org/10.5051/jpis.2010.40.4.180
  29. Yang C, Unursaikhan O, Lee JS, Jung UW, Kim CS, Choi SH. "Osteoconductivity and biodegradation of synthetic bone substitutes with different tricalcium phosphate contents in rabbits,". J Biomed Mater Res B Appl Biomater. 2014;102(1):80-8. https://doi.org/10.1002/jbm.b.32984
  30. Lim HC, Sohn JY, Park JC, Um YJ, Jung UW, Kim CS, et al. "Osteoconductive effects of calcium phosphate glass cement grafts in rabbit calvarial defects,". J Biomed Mater Res B Appl Biomater. 2010;95(1):47-52.
  31. Park JC LH, Sohn JY, Yun JH, Jung UW, Kim CS, et al. "Bone regeneration capacity of two different macroporous biphasic calcium materials in rabbit calvarial defect.,". J Korean Acad Periodontol. 2009;39:223-30. https://doi.org/10.5051/jkape.2009.39.S.223
  32. Dahlin C, Linde A, Gottlow J, Nyman S. Healing of bone defects by guided tissue regeneration. Plast Reconstr Surg. 1988;81(5):672-6. https://doi.org/10.1097/00006534-198805000-00004
  33. Nyman S, Lindhe J, Karring T, Rylander H. New attachment following surgical treatment of human periodontal disease. J Clin Periodontol. 1982;9(4):290-6. https://doi.org/10.1111/j.1600-051X.1982.tb02095.x
  34. Strobel LA, Rath SN, Maier AK, Beier JP, Arkudas A, Greil P, et al. Induction of bone formation in biphasic calcium phosphate scaffolds by bone morphogenetic protein-2 and primary osteoblasts. J Tissue Eng Regen Med. 2014;8(3):176-85. https://doi.org/10.1002/term.1511
  35. Shin YS, Seo JY, Oh SH, Kim JH, Kim ST, Park YB, et al. The effects of ErhBMP-2-/EGCG-coated BCP bone substitute on dehiscence around dental implants in dogs. Oral Dis. 2014;20(3):281-7. https://doi.org/10.1111/odi.12109
  36. Geiger M, Li RH, Friess W. Collagen sponges for bone regeneration with rhBMP-2. Adv Drug Deliv Rev. 2003;55(12):1613-29. https://doi.org/10.1016/j.addr.2003.08.010
  37. Friess W, Uludag H, Foskett S, Biron R, Sargeant C. Characterization of absorbable collagen sponges as recombinant human bone morphogenetic protein-2 carriers. Int J Pharm. 1999;185(1):51-60. https://doi.org/10.1016/S0378-5173(99)00128-3

Cited by

  1. Preparation of flexible bone tissue scaffold utilizing sea urchin test and collagen vol.28, pp.11, 2015, https://doi.org/10.1007/s10856-017-5993-5
  2. Keratose Hydrogels Promote Vascular Smooth Muscle Differentiation from C-kit-Positive Human Cardiac Stem Cells vol.26, pp.12, 2017, https://doi.org/10.1089/scd.2016.0351
  3. An Overview of Biomaterials in Periodontology and Implant Dentistry vol.2017, pp.None, 2015, https://doi.org/10.1155/2017/1948241
  4. 3D Printed Polycaprolactone Carbon Nanotube Composite Scaffolds for Cardiac Tissue Engineering vol.17, pp.4, 2015, https://doi.org/10.1002/mabi.201600250
  5. Multi-functional bio-compatible luminescent apatite with fatty acid passivated nano silver covers and its theranostics potential vol.8, pp.3, 2015, https://doi.org/10.1088/2043-6254/aa7717
  6. Bone morphogenetic protein‐2 immobilization on porous PCL‐BCP‐Col composite scaffolds for bone tissue engineering vol.134, pp.33, 2017, https://doi.org/10.1002/app.45186
  7. Nano-Biphasic Calcium Phosphate Ceramic for the Repair of Bone Defects vol.29, pp.6, 2018, https://doi.org/10.1097/scs.0000000000004514
  8. Corrosion resistance and cytotoxicity studies of DLC, TiN and TiCN films coated on 316L stainless steel vol.1144, pp.None, 2018, https://doi.org/10.1088/1742-6596/1144/1/012013
  9. TRPV4-mediates oscillatory fluid shear mechanotransduction in mesenchymal stem cells in part via the primary cilium vol.8, pp.None, 2018, https://doi.org/10.1038/s41598-018-22174-3
  10. Synthesis and characterization of swelling properties superabsorbent Hydrogel Carboxymethylcellulose-g-Poly (Acrylic Acid)/Natrium Alginate cross-linked by gamma-ray irradiation technique vol.1171, pp.None, 2015, https://doi.org/10.1088/1742-6596/1171/1/012011
  11. Poly (Methyl Methacrylate)/Biphasic Calcium Phosphate/Nano Graphene Bone Cement for Orthopedic Application vol.9, pp.1, 2015, https://doi.org/10.4103/jmss.jmss_34_18
  12. Evaluation and regulation of the corrosion resistance of macroporous titanium scaffolds with bioactive surface films for biomedical applications vol.7, pp.21, 2019, https://doi.org/10.1039/c8tb03359e
  13. Effects of food supplements on periodontal status and local and systemic inflammation after nonoperative periodontal treatment vol.61, pp.2, 2019, https://doi.org/10.2334/josnusd.18-0048
  14. Bone formation following sinus grafting with an alloplastic biphasic calcium phosphate in Lanyu Taiwanese mini‐pigs vol.91, pp.1, 2015, https://doi.org/10.1002/jper.17-0748
  15. Scleral ossicles: angiogenic scaffolds, a novel biomaterial for regenerative medicine applications vol.8, pp.1, 2015, https://doi.org/10.1039/c9bm01234f
  16. Digging deeper: structural background of PEGylated fibrin gels in cell migration and lumenogenesis vol.10, pp.8, 2015, https://doi.org/10.1039/c9ra08169k
  17. Improved bone regeneration using collagen-coated biphasic calcium phosphate with high porosity in a rabbit calvarial model vol.16, pp.1, 2015, https://doi.org/10.1088/1748-605x/abb1fc
  18. Ultra-sensitive electrosprayed AuNPs-decorated PAA/PAN electrospun nanofibers as glucose sensor vol.36, pp.21, 2015, https://doi.org/10.1557/s43578-021-00408-x
  19. The preparation and application of calcium phosphate biomedical composites in filling of weight-bearing bone defects vol.11, pp.1, 2021, https://doi.org/10.1038/s41598-021-83941-3