Acknowledgement
Supported by : Ministry of Health & Welfare
References
- Erbe EM, Marx JG, Clineff TD, Bellincampi LD. "Potential of an ultraporous beta-tricalcium phosphate synthetic cancellous bone void filler and bone marrow aspirate composite graft,". Eur Spine J. 2001;Suppl 2:S141-6.
- Rosenberg E, Rose LF. Biologic and clinical considerations for autografts and allografts in periodontal regeneration therapy. Dent Clin North Am. 1998;42(3):467-90.
- Han T, Carranza Jr FA, Kenney EB. Calcium phosphate ceramics in dentistry: a review of the literature. J West Soc Periodontol Periodontal Abstr. 1984;32(3):88-108.
- Moskow BS, Lubarr A. Histological assessment of human periodontal defect after durapatite ceramic implant. Report of a case. J Periodontol. 1983;54(8):455-62. https://doi.org/10.1902/jop.1983.54.8.455
- Ellinger RF, Nery EB, Lynch KL. Histological assessment of periodontal osseous defects following implantation of hydroxyapatite and biphasic calcium phosphate ceramics: a case report. Int J Periodontics Restorative Dent. 1986;6(3):22-33.
- Dorozhkin SV. Bioceramics of calcium orthophosphates. Biomaterials. 2010;31(7):1465-85. https://doi.org/10.1016/j.biomaterials.2009.11.050
- Daculsi G, Passuti N, Martin S, Deudon C, Legeros RZ, Raher S. Macroporous calcium phosphate ceramic for long bone surgery in humans and dogs. Clinical and histological study. J Biomed Mater Res. 1990;24(3):379-96. https://doi.org/10.1002/jbm.820240309
- Nery EB, LeGeros RZ, Lynch KL, Lee K. Tissue response to biphasic calcium phosphate ceramic with different ratios of HA/beta TCP in periodontal osseous defects. J Periodontol. 1992;63(9):729-35. https://doi.org/10.1902/jop.1992.63.9.729
- Kim JW, Choi KH, Yun JH, Jung UW, Kim CS, Choi SH, et al. Bone formation of block and particulated biphasic calcium phosphate lyophilized with Escherichia coli-derived recombinant human bone morphogenetic protein 2 in rat calvarial defects. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2011;112(3):298-306. https://doi.org/10.1016/j.tripleo.2010.10.025
- Kim JW, Jung IH, Lee KI, Jung UW, Kim CS, Choi SH, et al. Volumetric bone regenerative efficacy of biphasic calcium phosphate-collagen composite block loaded with rhBMP-2 in vertical bone augmentation model of a rabbit calvarium. J Biomed Mater Res Part A. 2012;100(12):3304-13.
- Patino MG, Neiders ME, Andreana S, Noble B, Cohen RE. Collagen as an implantable material in medicine and dentistry. J Oral Implantol. 2002;28(5):220-5. https://doi.org/10.1563/1548-1336(2002)028<0220:CAAIMI>2.3.CO;2
- Twardowski T, Fertala A, Orgel JP, San Antonio JD. Type I collagen and collagen mimetics as angiogenesis promoting superpolymers. Curr Pharm Des. 2007;13(35):3608-21. https://doi.org/10.2174/138161207782794176
- Nasr HF, Aichelmann-Reidy ME, Yukna RA. "Bone and bone substitutes,". Periodontol 2000. 1999;19:74-86. https://doi.org/10.1111/j.1600-0757.1999.tb00148.x
- Postlethwaite AE, Seyer JM, Kang AH. Chemotactic attraction of human fibroblasts to type I, II, and III collagens and collagen-derived peptides. ProcNatl Acad Sci U S A. 1978;75(2):871-5. https://doi.org/10.1073/pnas.75.2.871
- Rothamel D, Schwarz F, Sager M, Herten M, Sculean A, Becker J. Biodegradation of differently cross-linked collagen membranes: an experimental study in the rat. Clin Oral Implants Res. 2005;16(3):369-78. https://doi.org/10.1111/j.1600-0501.2005.01108.x
- Schwarz F, Rothamel D, Herten M, Sager M, Becker J. Angiogenesis pattern of native and cross-linked collagen membranes: an immunohistochemical study in the rat. Clin Oral Implants Res. 2006;17(4):403-9. https://doi.org/10.1111/j.1600-0501.2005.01225.x
- Lynch MP, Stein JL, Stein GS, Lian JB. The influence of type I collagen on the development and maintenance of the osteoblast phenotype in primary and passaged rat calvarial osteoblasts: modification of expression of genes supporting cell growth, adhesion, and extracellular matrix mineralization. Exp Cell Res. 1995;216(1):35-45. https://doi.org/10.1006/excr.1995.1005
- Sela MN, Kohavi D, Krausz E, Steinberg D, Rosen G. Enzymatic degradation of collagen-guided tissue regeneration membranes by periodontal bacteria. Clin Oral Implants Res. 2003;14(3):263-8. https://doi.org/10.1034/j.1600-0501.2003.140302.x
- Fellah BH, Gauthier O, Weiss P, Chappard D, Layrolle P. Osteogenicity of biphasic calcium phosphate ceramics and bone autograft in a goat model. Biomaterials. 2008;29(9):1177-88. https://doi.org/10.1016/j.biomaterials.2007.11.034
- Fleckenstein KB, Cuenin MF, Peacock ME, Billman MA, Swiec GD, Buxton TB, et al. Effect of a hydroxyapatite tricalcium phosphate alloplast on osseous repair in the rat calvarium. J Periodontol. 2006;77(1):39-45. https://doi.org/10.1902/jop.2006.77.1.39
- Brodie JC, Merry J, Grant MH. The mechanical properties of calcium phospate ceramics modified by collagen coating and populated by osteoblasts. J Mater Sci Mater Med. 2006;17(1):43-8.
- Newman E, Turner AS, Wark JD. The potential of sheep for the study of osteopenia: current status and comparison with other animal models. Bone. 1995;16(4 Suppl):277S-84S. https://doi.org/10.1016/S8756-3282(95)80121-9
- Pripatnanont P, Nuntanaranont T, Vongvatcharanon S. Proportion of deproteinized bovine bone and autogenous bone affects bone formation in the treatment of calvarial defects in rabbits. Int J Oral Maxillofac Surg. 2009;38(4):356-62. https://doi.org/10.1016/j.ijom.2009.02.015
- Xu S, Lin K, Wang Z, Chang J, Wang L, Lu J, et al. Reconstruction of calvarial defect of rabbits using porous calcium silicate bioactive ceramics. Biomaterials. 2008;29(17):2588-96. https://doi.org/10.1016/j.biomaterials.2008.03.013
- Shand JM, Heggie AA, Holmes AD, Holmes W. Allogeneic bone grafting of calvarial defects: an experimental study in the rabbit. Int J Oral Maxillofac Surg. 2002;31(5):525-31. https://doi.org/10.1054/ijom.2002.0281
- Lundgren D, Nyman S, Mathisen T, Isaksson S, Klinge B. Guided bone regeneration of cranial defects, using biodegradable barriers: an experimental pilot study in the rabbit. J Cranio-maxillo-facial Surg. 1992;20(6):257-60. https://doi.org/10.1016/S1010-5182(05)80438-X
- Cavalcanti SC, Pereira CL, Mazzonetto R, de Moraes M, Moreira RW. Histological and histomorphometric analyses of calcium phosphate cement in rabbit calvaria. J Cranio-maxillo-facial Surg. 2008;36(6):354-9. https://doi.org/10.1016/j.jcms.2008.02.005
- Sohn JY, Park JC, Um YJ, Jung UW, Kim CS, Cho KS, et al. Spontaneous healing capacity of rabbit cranial defects of various sizes. J Periodontal Implant Sci. 2010;40(4):180-7. https://doi.org/10.5051/jpis.2010.40.4.180
- Yang C, Unursaikhan O, Lee JS, Jung UW, Kim CS, Choi SH. "Osteoconductivity and biodegradation of synthetic bone substitutes with different tricalcium phosphate contents in rabbits,". J Biomed Mater Res B Appl Biomater. 2014;102(1):80-8. https://doi.org/10.1002/jbm.b.32984
- Lim HC, Sohn JY, Park JC, Um YJ, Jung UW, Kim CS, et al. "Osteoconductive effects of calcium phosphate glass cement grafts in rabbit calvarial defects,". J Biomed Mater Res B Appl Biomater. 2010;95(1):47-52.
- Park JC LH, Sohn JY, Yun JH, Jung UW, Kim CS, et al. "Bone regeneration capacity of two different macroporous biphasic calcium materials in rabbit calvarial defect.,". J Korean Acad Periodontol. 2009;39:223-30. https://doi.org/10.5051/jkape.2009.39.S.223
- Dahlin C, Linde A, Gottlow J, Nyman S. Healing of bone defects by guided tissue regeneration. Plast Reconstr Surg. 1988;81(5):672-6. https://doi.org/10.1097/00006534-198805000-00004
- Nyman S, Lindhe J, Karring T, Rylander H. New attachment following surgical treatment of human periodontal disease. J Clin Periodontol. 1982;9(4):290-6. https://doi.org/10.1111/j.1600-051X.1982.tb02095.x
- Strobel LA, Rath SN, Maier AK, Beier JP, Arkudas A, Greil P, et al. Induction of bone formation in biphasic calcium phosphate scaffolds by bone morphogenetic protein-2 and primary osteoblasts. J Tissue Eng Regen Med. 2014;8(3):176-85. https://doi.org/10.1002/term.1511
- Shin YS, Seo JY, Oh SH, Kim JH, Kim ST, Park YB, et al. The effects of ErhBMP-2-/EGCG-coated BCP bone substitute on dehiscence around dental implants in dogs. Oral Dis. 2014;20(3):281-7. https://doi.org/10.1111/odi.12109
- Geiger M, Li RH, Friess W. Collagen sponges for bone regeneration with rhBMP-2. Adv Drug Deliv Rev. 2003;55(12):1613-29. https://doi.org/10.1016/j.addr.2003.08.010
- Friess W, Uludag H, Foskett S, Biron R, Sargeant C. Characterization of absorbable collagen sponges as recombinant human bone morphogenetic protein-2 carriers. Int J Pharm. 1999;185(1):51-60. https://doi.org/10.1016/S0378-5173(99)00128-3
Cited by
- Preparation of flexible bone tissue scaffold utilizing sea urchin test and collagen vol.28, pp.11, 2015, https://doi.org/10.1007/s10856-017-5993-5
- Keratose Hydrogels Promote Vascular Smooth Muscle Differentiation from C-kit-Positive Human Cardiac Stem Cells vol.26, pp.12, 2017, https://doi.org/10.1089/scd.2016.0351
- An Overview of Biomaterials in Periodontology and Implant Dentistry vol.2017, pp.None, 2015, https://doi.org/10.1155/2017/1948241
- 3D Printed Polycaprolactone Carbon Nanotube Composite Scaffolds for Cardiac Tissue Engineering vol.17, pp.4, 2015, https://doi.org/10.1002/mabi.201600250
- Multi-functional bio-compatible luminescent apatite with fatty acid passivated nano silver covers and its theranostics potential vol.8, pp.3, 2015, https://doi.org/10.1088/2043-6254/aa7717
- Bone morphogenetic protein‐2 immobilization on porous PCL‐BCP‐Col composite scaffolds for bone tissue engineering vol.134, pp.33, 2017, https://doi.org/10.1002/app.45186
- Nano-Biphasic Calcium Phosphate Ceramic for the Repair of Bone Defects vol.29, pp.6, 2018, https://doi.org/10.1097/scs.0000000000004514
- Corrosion resistance and cytotoxicity studies of DLC, TiN and TiCN films coated on 316L stainless steel vol.1144, pp.None, 2018, https://doi.org/10.1088/1742-6596/1144/1/012013
- TRPV4-mediates oscillatory fluid shear mechanotransduction in mesenchymal stem cells in part via the primary cilium vol.8, pp.None, 2018, https://doi.org/10.1038/s41598-018-22174-3
- Synthesis and characterization of swelling properties superabsorbent Hydrogel Carboxymethylcellulose-g-Poly (Acrylic Acid)/Natrium Alginate cross-linked by gamma-ray irradiation technique vol.1171, pp.None, 2015, https://doi.org/10.1088/1742-6596/1171/1/012011
- Poly (Methyl Methacrylate)/Biphasic Calcium Phosphate/Nano Graphene Bone Cement for Orthopedic Application vol.9, pp.1, 2015, https://doi.org/10.4103/jmss.jmss_34_18
- Evaluation and regulation of the corrosion resistance of macroporous titanium scaffolds with bioactive surface films for biomedical applications vol.7, pp.21, 2019, https://doi.org/10.1039/c8tb03359e
- Effects of food supplements on periodontal status and local and systemic inflammation after nonoperative periodontal treatment vol.61, pp.2, 2019, https://doi.org/10.2334/josnusd.18-0048
- Bone formation following sinus grafting with an alloplastic biphasic calcium phosphate in Lanyu Taiwanese mini‐pigs vol.91, pp.1, 2015, https://doi.org/10.1002/jper.17-0748
- Scleral ossicles: angiogenic scaffolds, a novel biomaterial for regenerative medicine applications vol.8, pp.1, 2015, https://doi.org/10.1039/c9bm01234f
- Digging deeper: structural background of PEGylated fibrin gels in cell migration and lumenogenesis vol.10, pp.8, 2015, https://doi.org/10.1039/c9ra08169k
- Improved bone regeneration using collagen-coated biphasic calcium phosphate with high porosity in a rabbit calvarial model vol.16, pp.1, 2015, https://doi.org/10.1088/1748-605x/abb1fc
- Ultra-sensitive electrosprayed AuNPs-decorated PAA/PAN electrospun nanofibers as glucose sensor vol.36, pp.21, 2015, https://doi.org/10.1557/s43578-021-00408-x
- The preparation and application of calcium phosphate biomedical composites in filling of weight-bearing bone defects vol.11, pp.1, 2021, https://doi.org/10.1038/s41598-021-83941-3