DOI QR코드

DOI QR Code

Isolation of Bacillus sp. SHL-3 from the Dry Soil and Evaluation of Plant Growth Promoting Ability

  • Hong, Sun Hwa (Department of Environmental and Energy Engineering, Suwon University) ;
  • Kim, Ji Seul (Department of Environmental and Energy Engineering, Suwon University) ;
  • Sim, Jun Gyu (Department of Environmental and Energy Engineering, Suwon University) ;
  • Lee, Eun Young (Department of Environmental and Energy Engineering, Suwon University)
  • 투고 : 2014.12.04
  • 심사 : 2015.02.24
  • 발행 : 2015.02.28

초록

Excess use of chemical fertilizer causes soil acidification and accumulation of salt, and thus might bring to desertification of soil. To overcome this problem, it needs limited usage of chemical fertilizer and increased usage of natural fertilizer as an alternative. In this study, dry soil-borne Bacillus sp. SHL-3, which was isolated from arid and barren soil, with plant growth promoting activity was isolated for identification and to determine optimal culture condition. A bacterial strain SHL-3 had the IAA productivity ($5.16{\pm}0.10mg\;L^{-1}$), ACC deaminase activity ($0.36{\pm}0.09$ at 51 hours) and siderophore synthesis. It was identified as genus Bacillus sp.. Also, optimal culture condition of SHL-3 were $20^{\circ}C$ and pH 7 in LB medium. Bacillus sp. SHL-3 had up to 4% salt tolerance in the medium. We evaluated the plant growth promotion ability of SHL-3 using yam (Dioscorea japonica Thunb.). As a result, Bacillus sp. SHL-3 was effective on the increase of the shoot length (202.4% increase for 91 days). These results indicate that Bacillus sp. SHL-3 can serve as a promising microbial resource for the biofertilizers of soil.

키워드

참고문헌

  1. Amanda, S. M., and B. Adriano. 2008. Evaluation of environmental conditions for production of bacteriocin-like substance by Bacillus sp. Strain P34. World J. Microbiol Biotechnol. 24:641-646. https://doi.org/10.1007/s11274-007-9520-6
  2. Belimov, A. A., N. Hontzeas, V. I. Safronova, S. V. Demchinskaya, G. Piluzza, S. Bullitta, and B. R. Glick. 2005. Cadmium-tolerant plant growth-promoting bacteria associated with the roots of Indian mustard (Brassica juncea L. Czern.). Soil Biol. Biochem. 37:241-250. https://doi.org/10.1016/j.soilbio.2004.07.033
  3. Chin-A-Woeng, T. F. C., G. V. Bloemberg, A. J. van der Bij, K. M. G. M. van der Drift, J. Schripsema, and F. J. de Bruijn. 1998. Biocontrol by phenazine-1-carboxamideproducing Pseudomonas chlororaphis PCL1391 of tomato root rot caused by Fusarium oxysporum f. sp. Radicis lycopersici. Mol. Plant-Microbe Interact. 11:1069-1077. https://doi.org/10.1094/MPMI.1998.11.11.1069
  4. Chio, M. H., W. Y. Choi, H. K. Park, J. K. Nam, M. H. Back, J. H. Lee, S. S. Kim, and C. K. kim. 2006. Influences of site-specific N application on rice grain yield and quality in small size paddy field. Korean J. Crop. Sci. 51:369-378.
  5. Dastager, S. G., C. K. Deepa, and A. Panday. 2010. Isolation and characterization of novel plant growth promoting Micrococcus sp. NII-0909 and its interaction with cowpea. Plant Physiol. Biochem. 48:987-992. https://doi.org/10.1016/j.plaphy.2010.09.006
  6. Elias, P. O., and A. S. Gbadegesin. 2012. Comparative Study of Soils Derived from Sedimentary and Basement Rock Formations of the Lower Ogun River Floodplain, South Western Nigeria. J. Geogr. Geol. 4:71-80.
  7. Glick, B. R., D. M. Penrose, and J. Li. 2008. A model for the lowering of plant ethylene concentration by plant growthpromoting bacteria. J. Theor. Biol. 190:63-68.
  8. Glick, B.R. 2006. Phytoremediation: synergistic use of plants and bacteria to clean up the environment. Biotechnol. Adv. 21:383-393.
  9. Ha, H. S., U. G. Kang, H. Lee, and Y. B. Lee. 1998. Effects of fly ash, gypsum, and shell on the chemical properties of soil and growth of Chinese cabbage in plastic film housed paddy. Korean J. Environ. Agric. 17:65-69.
  10. Hall, J. A., D. Person, and B. R. Glick. 1996. Root elongation in various agronomic crops by the plant growth promoting rhizobacterium Pseudomonas putida GR12-2. Isr. J. Plant Sci. 44:37-42. https://doi.org/10.1080/07929978.1996.10676631
  11. Hong, S. H., and E. Y. Lee. 2014. Vegetation restoration and prevention of coastal sand dunes erosion using ion exchange resins and the plant growth-promoting rhizobacteria Bacillus sp. SH1RP8 isolated from indigenous plants. Int. Biodeterior. Biodegradation. 95:262-269. https://doi.org/10.1016/j.ibiod.2014.05.026
  12. Hong, S. H., H. W. Ryu, J. S. Kim, and K. S. Cho. 2011. Rhizoremediation of diesel-contaminated soil using the plant growth-promoting rhizobacterium Gordonia sp. S2RP-17. Biodegradation. 22:593-601. https://doi.org/10.1007/s10532-010-9432-2
  13. Hong, S. H., M. H. Lee, G. S. Kim, and E. Y. Lee. 2012. An evaluation of plant growth promoting activities and salt tolerance of rhizobacteria isolated from plants native to coastal sand dune. Korean J. Microbiol. Biotechnol. 40:261--267. https://doi.org/10.4014/kjmb.1208.08003
  14. Johnson, D. L., D. R. Anderson, and S.P. McGrath. 2005. Soil microbial response during the phytoremediation of a PAH contaminated soil. Soil Biol. Biochem. 37:2334-2336. https://doi.org/10.1016/j.soilbio.2005.04.001
  15. Jun, H. S., and W. C. Park. 2001. Soil chemical characteristics and comparison with infested status of nematode (Meloidogyne spp.) in plastic house continuously cultivated oriental melon in songju. Korean J. Environ. Agric. 20:127-132.
  16. Kim, J. M., W. J. Lim, and H. J. Suh. 2001. Feather-degrading Bacillus species from poultry waste. Process biochem. 37:287-291. https://doi.org/10.1016/S0032-9592(01)00206-0
  17. Kloepper, J. W., A. Gutierrwz-estrada, and J. A. Mclnroy. 2007. Photoperiod regulates elicitation of growth promotion but not induced resistance by plant growth promoting rhizobacteria. Can. J. Microbiol. 53:159-167. https://doi.org/10.1139/w06-114
  18. Kohler, J., F. Caravaca, L. Carrasco, and A. Roldan. 2007. Interactions between a plant growth-promoting rhizobacterium an AM fungus and a phosphate-solubilising fungus in the rhizosphere of Lactuca sativa. Appl. Soil Ecol. 35:480-487. https://doi.org/10.1016/j.apsoil.2006.10.006
  19. Ko, J., J. Lee, K. Woo, S. Song, J. Kang, M. Seo, D. Kwak, B. Oh, and M. Nam. 2011. Effects of soil organic matter contents, paddy types and agricultural climatic zone on CH4 emissions from rice paddy field. Korean J. Soil Sci. Fert. 44:887-894. https://doi.org/10.7745/KJSSF.2011.44.5.887
  20. Koo, S. Y., and K. S. Cho. 2011. Characterization of Serratia sp. K1RP-49 for Application to the Rhizoremediation of Heavy Metals. Environ. Earth Sci. 1:3-13.
  21. Kumar, P., R. C. Dubey, and D. K. Maheshwari. 2012. Bacillus strains isolated from rhizosphere showed plant growth promoting and antagonistic activity against phytopathogens. Microbiol. Res. 167:493-9 https://doi.org/10.1016/j.micres.2012.05.002
  22. Lee, E. Y., and S. H. Hong. 2013. Plant growth-promoting ability by the newly isolated bacterium Bacillus aerius MH1RS1 from indigenous plant in sand dune. J. Kor. Soc. Environ. Eng. 35:687-693. https://doi.org/10.4491/KSEE.2013.35.10.687
  23. Lebeau, T., A. Braud, and K. Jezequel, 2008. Performance of bioaugmentation-assisted phytoextraction applied to metal contaminated soils: A review. Environ. Pollut. 153:497-522. https://doi.org/10.1016/j.envpol.2007.09.015
  24. Lucy, M., E. Reed, and B. R. Glick. 2004. Application of free living plant growth promoting rhizobacteria. Antonie van Leeuwenhoek Int. J. Gen. and Mol. Microbiol. 86:1-25. https://doi.org/10.1023/B:ANTO.0000024903.10757.6e
  25. Lugtenberg. B., and F. Kamilova. 2009. Plant-growth-promoting rhizobacteria. Annu. Rev. Microbiol. 63:541-556. https://doi.org/10.1146/annurev.micro.62.081307.162918
  26. Mena-Violante, H. G., and V. Olade-Portuga. 2007. Alteration of tomato fruit quality by root inoculation with plant growthpromoting rhizobacteria (PGPR): Bacillus subtilis BEB-13bs. Sci. Hortic. 113:103-106. https://doi.org/10.1016/j.scienta.2007.01.031
  27. Oguike, P. C., and J. S. C. Mbagwu. 2009. Variations in some physical properties and organic matter content of soils of coastal plain sand under different land use types. World J. Agr. Sci.5:63-69.
  28. Olabiyi, T. I., A.O. Olayiwolat and G.O. Oyediran. 2009. Influence of soil textures on distribution of phytonematodes in the South Western Nigeria. 2009. World J. Agr. Sci. 5:557-560.
  29. Park, J. C., J. H. Yoo, J. Y. Cha, M, S. Kim, and Y. S. Cho. 2004. Isolation, identification and optimal culture condition of Bacillus sp. FF-9 having antifungal activity on the turf grass pathogens caused by Rhizoctonia solani AG II-II. J. Korean Soc. Appl. Biol. Chem. 47:373-378.
  30. Pessarakli, M., J. T. Huber, and T. C. Tucker. 1989. Protein synthesis in green beans under salt stress conditions. J. Plant Nutr. 12:1105-1121. https://doi.org/10.1080/01904168909364026
  31. Pillai, P., and G. Archana. 2008. Hide depilation and feather disintegration studies with keratinolytic serine protease from a novel Bacillus subtilis isolate. Appl. Microbiol. Biotechnol. 78:643-650. https://doi.org/10.1007/s00253-008-1355-z
  32. Prashanth, S., and N. Mathivanan. 2010. Growth promoting of groundnut by IAA producing rhizobacteria Bacillus licheniformis MML2501. Arch. Phytopathol. Plant Prot. 43:191-208. https://doi.org/10.1080/03235400802404734
  33. Reetha, S., G. Bhuvanswari, P. Thamizhiniyan, and T. Ravi Mycin. 2014. Isolation of indole acetic acid (IAA) producing rhizobacteria of Pseudomonas fluorescens and Bacillus subtilis and enhance growth of onion (Allim cepa. L). Int. J. Curr. Microbiol. App. Sci. 3:568-574.
  34. Romanus, O. 2013. Erosion and flood vulnerability of soils: A climatic challenge in Southern Nigeria. Int. J. Sci. Technol. 2:675-684.
  35. Sharma, S. K., A. Ramesh, and B. N. Johri. 2013. Isolation and characterization of plant growth-promoting Bacillus amyloliquefaciens strain sks_bnj_1 and its influence on rhizosphere soil properties and nutrition of soybean (Glycine max L. Merrill). J. Virol. Microbiol. 1:1-19.
  36. Singleton, P. W., and B. Bohool. 1984. Effect of salinity on nodule formation by soybean. Plant Physiol. Jan. 74:72-76. https://doi.org/10.1104/pp.74.1.72
  37. Starovic, M., D. Josic, S. Pavlovic, S. Drazic, D. Postic, T. Popovic, and S. Stojanovic. 2013. The effect of IAA producing Bacillus sp. Q3 strain on marshmallow seed germination. Bulg. J. Agric. Sci. 19:572-577.
  38. Uhm, M. J., J. J. Noh, H. G. Chon, S. W. Kwon, and Y. J. Song. 2012. Application effect of organic fertilizer and chemical fertilizer on the watermelon growth and soil chemical properties in greenhouse. Korean J. Environ. Agric. 31:1-8. https://doi.org/10.5338/KJEA.2012.31.1.1
  39. Wahyudi, A.T., R. P. Astuti, A. Widyawati, A. Meryandini, and A. A. Nawangsih. 2011. Characterization of Bacillus sp. strains isolated from rhizosphere of soybean plants for their use as potential plant growth for promoting Rhizobacteria. J. Microbiol. Antimicrob. 3:34-40.
  40. Williams, C. M.,C. S. Richter, J. M. Mackenzie, and J. C. H. Shih. 1990. Isolation idification and characterization of a featherdegrading bacterium. Appl. Environ. Microbiol. 56:1509-1515.
  41. Yook, B. Y., C. K. Choi, K. B. Lee, Y. S. Kang, and C. Yoon. 2009. Effects of forage cropping system and cattle slurry application on productivity of rice and forage crops and nutrient movement in paddy land. J. Kor. Grassl. Forage Sci. 31:55-64.

피인용 문헌

  1. Optimization of Indole-3-acetic Acid (IAA) Production by Bacillus megaterium BM5 vol.49, pp.5, 2016, https://doi.org/10.7745/KJSSF.2016.49.5.461
  2. Phytostabilization of salt accumulated soil using plant and biofertilizers: Field application vol.124, 2017, https://doi.org/10.1016/j.ibiod.2017.05.001