DOI QR코드

DOI QR Code

Distribution and accumulation of 177Lu-labeled thermally cross-linked superparamagnetic iron oxide nanoparticles in the tissues of ICR mice

  • Hue, Jin Joo (College of Veterinary Medicine and Research Institute of Veterinary Medicine, Chungbuk National University) ;
  • Lee, Hu-Jang (College of Veterinary Medicine and Institute of Life Science, Gyeongsang National University) ;
  • Nam, Sang Yoon (College of Veterinary Medicine and Research Institute of Veterinary Medicine, Chungbuk National University) ;
  • Kim, Jong-Soo (College of Veterinary Medicine and Research Institute of Veterinary Medicine, Chungbuk National University) ;
  • Lee, Beom Jun (College of Veterinary Medicine and Research Institute of Veterinary Medicine, Chungbuk National University) ;
  • Yun, Young Won (College of Veterinary Medicine and Research Institute of Veterinary Medicine, Chungbuk National University)
  • Received : 2014.11.10
  • Accepted : 2014.12.29
  • Published : 2015.03.31

Abstract

To investigate kinetics of free $^{177}Lu$ and $^{177}Lu$-labeled thermally cross-linked superparamagnetic iron oxide nanoparticles (TCL-SPION), suspensions were intravenously injected into the tail vein of mice at a dose of $5{\mu}Ci$/mouse or 15 mg/kg body weight, respectively. Free $^{177}Lu$ radioactivity levels were highest in kidney followed by liver and lung 1 day post-injection. $^{177}Lu$-labeled TCL-SPION radioactivity in liver and spleen was significantly higher compared to that of other organs throughout the experimental period (p < 0.05). Radioactivity in blood, brain, and epididymis rapidly declined until 28 days. Based on these results, TCL-SPION could be a safe carrier of therapeutics.

Keywords

References

  1. Alexiou C, Schmid RJ, Jurgons R, Kremer M, Wanner G, Bergemann C, Huenges E, Nawroth T, Arnold W, Parak FG. Targeting cancer cells: magnetic nanoparticles as drug carriers. Eur Biophys J 2006, 35, 446-450. https://doi.org/10.1007/s00249-006-0042-1
  2. Bourrinet P, Bengele HH, Bonnemain B, Dencausse A, Idee JM, Jacobs PM, Lewis JM. Preclinical Safety and pharmacokinetic profile of ferumoxtran-10, an ultrasmall superparamagnetic iron oxide magnetic resonance contrast agent. Invest Radiol 2006, 41, 313-324. https://doi.org/10.1097/01.rli.0000197669.80475.dd
  3. Chastellain M, Petri A, Gupta A, Rao KV, Hofmann H. Super paramagnetic silica-iron oxide nanocomposites for application in hyperthermia. Adv Eng Mater 2004, 6, 235-241. https://doi.org/10.1002/adem.200300574
  4. Ferrucci JT, Stark DD. Iron oxide-enhanced MR imaging of the liver and spleen: review of the first 5 years. AJR Am J Roentgenol 1990, 155, 943-950. https://doi.org/10.2214/ajr.155.5.2120963
  5. Gupta AK, Gupta M. Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 2005, 26, 3995-4021. https://doi.org/10.1016/j.biomaterials.2004.10.012
  6. Harisinghani MG, Barentsz J, Hahn PF, Deserno WM, Tabatabaei S, van de Kaa CH, de la Rosette J, Weissleder R. Noninvasive detection of clinically occult lymph-node metastases in prostate cancer. N Engl J Med 2003, 348, 2491-2499. https://doi.org/10.1056/NEJMoa022749
  7. Jain TK, Morales MA, Sahoo SK, Leslie-Pelecky DL, Labhasetwar V. Iron oxide nanoparticles for sustained delivery of anticancer agents. Mol Pharm 2005, 2, 194-205. https://doi.org/10.1021/mp0500014
  8. Lee JH, Huh YM, Jun YW, Seo JW, Jang JT, Song HT, Kim S, Cho EJ, Yoon HG, Suh JS, Cheon J. Artificially engineered magnetic nanoparticles for ultra-sensitive molecular imaging. Nat Med 2007, 13, 95-99. https://doi.org/10.1038/nm1467
  9. Lee H, Lee E, Kim DK, Jang NK, Jeong YY, Jon S. Antibiofouling polymer-coated superparamagnetic iron oxide nanoparticles as potential magnetic resonance contrast agents for in vivo cancer imaging. J Am Chem Soc 2006, 128, 7383-7389. https://doi.org/10.1021/ja061529k
  10. Lee H, Yu MK, Park S, Moon S, Min JJ, Jeong YY, Kang HW, Jon S. Thermally cross-linked superparamagnetic iron oxide nanoparticles: synthesis and application as a dual imaging probe for cancer in vivo. J Am Chem Soc 2007, 129, 12739-12745. https://doi.org/10.1021/ja072210i
  11. Melis M, Krenning EP, Bernard BF, Barone R, Visser TJ, de Jong M. Localisation and mechanism of renal retention of radiolabelled somatostatin analogues. Eur J Nucl Med Mol Imaging 2005, 32, 1136-1143. https://doi.org/10.1007/s00259-005-1793-0
  12. Persson M, Gedda L, Lundqvist H, Tolmachev V, Nordgren H, Malmstrom PU, Carlsson J. [177Lu]Pertuzumab: experimental therapy of HER-2-expressing xenografts. Cancer Res 2007, 67, 326-331. https://doi.org/10.1158/0008-5472.CAN-06-2363
  13. Weissleder R, Bogdanov A, Neuwelt EA, Papisov M. Long-circulating iron oxides for MR imaging. Adv Drug Deliv Rev 1995, 16, 321-334. https://doi.org/10.1016/0169-409X(95)00033-4
  14. Weissleder R, Stark DD, Engelstad BL, Bacon BR, Compton CC, White DL, Jacobs P, Lewis J. Superparamagnatic iron oxide: pharmacokinetics and toxicity. AJR Am J Roentgenol 1989, 152, 167-173. https://doi.org/10.2214/ajr.152.1.167
  15. Yu MK, Jeong YY, Park J, Park S, Kim JW, Min JJ, Kim K, Jon S. Drug-loaded superparamagnetic iron oxide nanoparticles for combined cancer imaging and therapy in vivo. Angew Chem Int Ed Engl 2008, 47, 5362-5365. https://doi.org/10.1002/anie.200800857

Cited by

  1. Interaction of Size-Tailored PEGylated Iron Oxide Nanoparticles with Lipid Membranes and Cells vol.3, pp.3, 2017, https://doi.org/10.1021/acsbiomaterials.6b00311
  2. Magnetic Resonance Imaging-Guided Drug Delivery to Breast Cancer Stem-Like Cells pp.21922640, 2018, https://doi.org/10.1002/adhm.201800266
  3. Translating Nanomedicine to Comparative Oncology-the Case for Combining Zinc Oxide Nanomaterials with Nucleic Acid Therapeutic and Protein Delivery for Treating Metastatic Cancer vol.370, pp.3, 2015, https://doi.org/10.1124/jpet.118.256230