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Abstract : To investigate kinetics of free 177Lu and 177Lu-labeled thermally cross-linked superparamagnetic iron oxide
nanoparticles (TCL-SPION), suspensions were intravenously injected into the tail vein of mice at a dose of 5 µCi/
mouse or 15 mg/kg body weight, respectively. Free 177Lu radioactivity levels were highest in kidney followed by liver
and lung 1 day post-injection. 177Lu-labeled TCL-SPION radioactivity in liver and spleen was significantly higher
compared to that of other organs throughout the experimental period (p < 0.05). Radioactivity in blood, brain, and
epididymis rapidly declined until 28 days. Based on these results, TCL-SPION could be a safe carrier of therapeutics.
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Many previous studies were performed to investigate the

potential of magnetic nanoparticles as the drug-delivery vehi-

cle [1, 7]. This characteristic makes them attractive for many

applications, ranging from contrast enhancing agents for MRI

to drug-delivery systems [5].

Research on the superparamagnetic iron oxide nanoparti-

cles (SPION) has already demonstrated that these nanoparti-

cles have the potential becoming an important tool for

enhancing magnetic resonance contrast [2, 8]. All of these

biomedical applications require that the nanoparticles have

high magnetization values, a size smaller than 100 nm, and a

narrow particle size distribution [5]. The magnetic nanoparti-

cles have many advantages including thermal therapy, guid-

ing to the target site, and relatively non-toxic [15]. These

applications also need peculiar surface coating of the mag-

netic particles, which has to be nontoxic and biocompatible

and must allow for a targetable delivery with particle local-

ization in a specific area. Such magnetic nanoparticles can

bind to drugs, proteins, enzymes, antibodies, or nucleotides

and can be directed to an organ, tissue, or tumor using an

external magnetic-field [3]. More importantly, iron oxide

nanoparticles have a long blood retention time, biodegrad-

ability and low toxicity [6, 7]. Recently, anti-biofouling poly-

mer-coated TCL-SPION was reported as a novel diagnostic

probe for in vivo cancer imaging [9, 10].

Lutetium 177 (177Lu), a, γ and β emitter radionuclide, is

presently considered useful for a potential bone pain pallia-

tion agent owing to its suitable nuclear decay characteristics

[T1/2 = 6.73 days, Eβ(max) = 497 keV, Eγ = 113 keV (6.4%) and

208 keV (11%)] and the feasibility of large-scale production

with adequate specific activity using moderate flux research

reactors [3]. We investigated the distribution and accumula-

tion of 177Lu-labeled TCL-SPION and the in vivo kinetics of
177Lu-labeled TCL-SPION on tissues of mice. 

177Lu (β = 495 keV, γ = 113 and 208 keV, t1/2= 6.7 days)

purchased from Nuclear Research and Consultancy Group

(Netherland). 177Lu-labeled TCL-SPION (stability = 98% effi-

ciency, period of efficiency = 21 days) was obtained from the

Gwangju Institute of Science and Technology (Gwangju,

Korea). SEM and TEM analysis of TCL-SPION were shown

in Fig. 1. All other chemicals and reagents required for

experiments were of analytical grade, and purchased from

Sigma-Aldrich Chemical. (USA).

Sixty 5-week old male ICR mice were purchased from

Koatec (Korea) at 21.3 ± 1.7 g in mass. Upon arrival, the

mice were housed in a temperature- and humidity-controlled

environment with a reversed 12/12 h light/dark cycle and free

access to food and water. Animal experiments were per-

formed in accordance with standard operation procedures of

laboratory animals that were approved by the Institutional

Animal Care and Use Committee of Chungbuk National Uni-

versity (approval no. CBNUR-284-27).
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After 1 week of acclimation, 50 μL of 177Lu-labeled TCL-

SPION (15 mg/kg body weight, n = 55) and free 177Lu sus-

pensions (5 μCi/mouse, n = 5) were intravenously injected in

the tail vein of mice, respectively. At 1 day post-treatment,

five mice injected with free 177Lu suspensions were sacri-

ficed and collected the blood and various organs (liver, kid-

ney, spleen, heart, lung, stomach, small intestine and large

intestine). At 0.25, 0.5, 1, 2, 4 h, 1, 3, 7, 14, 21 and 28-day

post-injection, five mice injected with 177Lu-labeled TCL-

SPION were sacrificed by withdrawing blood from the heart

under diethyl ether anesthesia. The various organs (liver, kid-

ney, spleen, heart, small intestine, large intestine, lung, stom-

ach, thymus, testis, epididymis, lymph node, brain) of each

animal were also collected at 0.5, 2 h, 1, 7, 14, 21 and 28-day

post-injection. The radioactivity in blood and organs was

measured using a gamma counter (PerkinElmer, USA). Sta-

tistical analyses were carried out using a one-way analysis of

variance (ANOVA) and Student’s t-test. All data were expressed

as the mean ± SD. p values < 0.05 were considered to be sta-

tistically significant.

Results of the analytical free 177Lu radioactivity in blood

and various organs of mice at one day-after treatment were

shown in Fig. 1. In the average of free 177Lu radioactivity, the

kidney (2.62 ± 1.14%) was first, followed by the liver (2.02

± 0.2%) and the lung (1.11 ± 0.56%), and the blood (0.19 ±

0.06%) was lowest. Due to partial reabsorption of radiola-

belled peptides after glomerular filtration, the retention of

free 177Lu radioactivity in the radiosensitive kidney is sub-

stantial [11]. On the other hand, Persson et al. [12] reported

that the mean of free 177Lu radioactivity in the blood was the

highest, followed by the kidney at one day post-injection of
177Lu-labeled pertuzumab into BALB/c mice with the tumor.

This result may be caused by the different of species and

dosage of treatment. Fig. 2 shows the change of 177Lu-labeled

TCL-SPION level in the blood of mice during 28-day post-

injection. At 0.25 h, 177Lu-labeled TCL-SPION radioactivity

in blood was 3.571 ± 0.679% injected dose (ID)/g and slowly

declined in a time-dependent manner. Table 1 represents the

biodistribution of 177Lu-labeled TCL-SPION in blood and

various organs of mice during 28-day post-injection. 177Lu-

labeled TCL-SPION radioactivity of liver and spleen was

significantly different compared to that of blood and other

organs throughout the experimental period (p < 0.05). The

highest 177Lu-labeled TCL-SPION radioactivity in liver and

spleen was 36.121 ± 8.239% ID/g at one day post-injection

and 15.615 ± 2.225% ID/g at 0.5 h post-injection, respec-

tively, and that in kidney, and small and large intestine was

observed at 2 h. At 0.5 h post-injection, other organs showed

the highest 177Lu-labeled TCL-SPION radioactivity.

In present study, 177Lu-labeled TCL-SPION was immedi-

ately entered into the blood and rapidly eliminated during

0.25 h to one-day post-injection and then slowly eliminated

thereafter (Fig. 3). This result suggests that the absorbed
177Lu-labeled TCL-SPION was distributed from systemic cir-

culation into the intracellular tissues. In the previous study,

ferumoxides cleared very rapidly from plasma (elimination

half-life of 6 min in rats) by uptaking of macrophages of the

reticulo-endothelial system (mainly Kupffer cells in liver and

spleen) [14]. Radioactivity of 77Lu-labeled TCL-SPION in

liver and spleen was higher than that in other organs during

Fig. 1. (A) SEM analysis of thermally cross-linked superparamagnetic iron oxide nanoparticles (TCL-SPION). Nanoparticles had a

smooth morphology. (B) TEM analysis of TCL-SPION. A: ×50,000, B: ×10,000. Scale bars = 100 nm (A), 50 nm (B).

Fig. 2. Biodistribution of free 177Lu activation in blood and var-

ious organs of mice at 1 day after treatment of free 177Lu sus-

pensions at a dose of 5 µCi/mouse. The bars were expressed as

means ± SD. SI: small intestine, LI: large intestine.
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experimental periods. Data were expressed as 15.1% ID/g in

the liver and 9.1% ID/g in the spleen at 28 days. The iron

contained in ferumoxtran-10 was incorporated into the body's

iron store and was progressively found in hemoglobin [2]. A

biodistribution study of MnMEIO-Herceptin conjugates labeled

with radioactive 111In using γ-counter analysis showed that in

addition to being distributed within the tumor (3.4% injected

dose ID/g), nanoparticles were also found on the liver (12.8%

ID/g), spleen (8.7% ID/g) and muscle (1.0% ID/g) [8]. After

intravenous injection, most SPIO nanoparticles were accu-

mulated in the Kupffer cells in the liver and in the reticulo-

endothelial system in the spleen [4]. Biodistribution of SPIO

(AMI-25) measured by 59Fe and relaxation time studies is

consistent with a model of initial vascular distribution of the

agent and specific uptake in reticulo-endothelial cells. These

results from both techniques indicate similar initial distribu-

tion of intravenous administered AMI-25, with 85-95% uptake

in the reticulo-endothelial system [14]. In other studies, after

SPIO injection approximately 1 day, increases in T2 and T1

values of the precontrast baseline represent the dissolution of

the crystalline form necessary for super-paramagnetic behav-

ior. Interestingly, spleen displays a second peak of radioactiv-

ity after 60 days and clinical observation of reversal of liver

and spleen signal intensity strengthened experimental evi-

dence and suggested similar metabolism of iron oxide in

humans [13]. These results were similar with the results from

our study. In conclusion, the TCL-SPION was mainly accu-

mulated in the liver and can be used for iron pool from the

body iron stores.
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Time after treatment (% ID/g) 

0.5 h 2 h 1 d 7 d 14 d 21 d 28 d
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Means with the different letter in the same column are significantly different (p < 0.05).

Fig. 3. Biodistribution of 177Lu-labeled TCL-SPION during 28

days in the blood of ICR mice intravenously injected with sin-

gle dose of TCL-SPION 15 mg/kg TCL. The bars were expressed

as means ± SD.



60 Jin Joo Hue, Hu-Jang Lee, Sang Yoon Nam, Young Won Yun, Jong-Soo Kim, Beom Jun Lee

agent. Invest Radiol 2006, 41, 313-324.

3. Chastellain M, Petri A, Gupta A, Rao KV, Hofmann H.

Super paramagnetic silica-iron oxide nanocomposites for

application in hyperthermia. Adv Eng Mater 2004, 6, 235-

241.

4. Ferrucci JT, Stark DD. Iron oxide-enhanced MR imaging

of the liver and spleen: review of the first 5 years. AJR

Am J Roentgenol 1990, 155, 943-950.

5. Gupta AK, Gupta M. Synthesis and surface engineering

of iron oxide nanoparticles for biomedical applications.

Biomaterials 2005, 26, 3995-4021.

6. Harisinghani MG, Barentsz J, Hahn PF, Deserno WM,

Tabatabaei S, van de Kaa CH, de la Rosette J, Weissleder

R. Noninvasive detection of clinically occult lymph-node

metastases in prostate cancer. N Engl J Med 2003, 348,

2491-2499.

7. Jain TK, Morales MA, Sahoo SK, Leslie-Pelecky DL,

Labhasetwar V. Iron oxide nanoparticles for sustained

delivery of anticancer agents. Mol Pharm 2005, 2, 194-205.

8. Lee JH, Huh YM, Jun YW, Seo JW, Jang JT, Song HT,

Kim S, Cho EJ, Yoon HG, Suh JS, Cheon J. Artificially

engineered magnetic nanoparticles for ultra-sensitive molecular

imaging. Nat Med 2007, 13, 95-99.

9. Lee H, Lee E, Kim DK, Jang NK, Jeong YY, Jon S.

Antibiofouling polymer-coated superparamagnetic iron oxide

nanoparticles as potential magnetic resonance contrast agents

for in vivo cancer imaging. J Am Chem Soc 2006, 128,

7383-7389.

10. Lee H, Yu MK, Park S, Moon S, Min JJ, Jeong YY,

Kang HW, Jon S. Thermally cross-linked superparamagnetic

iron oxide nanoparticles: synthesis and application as a dual

imaging probe for cancer in vivo. J Am Chem Soc 2007,

129, 12739-12745. 

11. Melis M, Krenning EP, Bernard BF, Barone R, Visser

TJ, de Jong M. Localisation and mechanism of renal

retention of radiolabelled somatostatin analogues. Eur J

Nucl Med Mol Imaging 2005, 32, 1136-1143.

12. Persson M, Gedda L, Lundqvist H, Tolmachev V,

Nordgren H, Malmström PU, Carlsson J. [177Lu]Pertuzumab:

experimental therapy of HER-2-expressing xenografts. Cancer

Res 2007, 67, 326-331.

13. Weissleder R, Bogdanov A, Neuwelt EA, Papisov M.

Long-circulating iron oxides for MR imaging. Adv Drug

Deliv Rev 1995, 16, 321-334.

14. Weissleder R, Stark DD, Engelstad BL, Bacon BR,

Compton CC, White DL, Jacobs P, Lewis J. Superpara-

magnatic iron oxide: pharmacokinetics and toxicity. AJR

Am J Roentgenol 1989, 152, 167-173.

15. Yu MK, Jeong YY, Park J, Park S, Kim JW, Min JJ,

Kim K, Jon S. Drug-loaded superparamagnetic iron oxide

nanoparticles for combined cancer imaging and therapy in

vivo. Angew Chem Int Ed Engl 2008, 47, 5362-5365.


