DOI QR코드

DOI QR Code

Change in the Energy Band Gap and Transmittance IGZO, ZnO, AZO OMO Structure According to Ag Thickness

IGZO, ZnO, AZO OMO 구조의 Ag두께 변화에 따른 투과율과 에너지 밴드 갭의 변화

  • 이승민 (청주대학교 전자공학과) ;
  • 김홍배 (청주대학교 반도체공학과) ;
  • 이상렬 (청주대학교 반도체공학과)
  • Received : 2014.09.15
  • Accepted : 2015.02.24
  • Published : 2015.03.01

Abstract

In this study, we fabricated the indium gallium zinc oxide (IGZO), zinc oxide (ZnO), aluminum zinc oxide (AZO). oxide and silver are deposited by magnetron sputtering and thermal evaporator, respectively transparency and energy bandgap were changed by the thickness of silver layer. To fabricate metal oxide metal (OMO) structure, IGZO sputtered on a corning 1,737 glass substrate was used as bottom oxide material and then silver was evaporated on the IGZO layer, finally IGZO was sputtered on the silver layer we get the final OMO structure. The radio-frequency power of the target was fixed at 30 W. The chamber pressure was set to $6.0{\times}10^{-3}$ Torr, and the gas ratio of Ar was fixed at 25 sccm. The silver thickness are varied from 3 to 15 nm. The OMO thin films was analyzed using XRD. XRD shows broad peak which clearly indicates amorphous phase. ZnO, AZO, OMO show the peak [002] direction at $34^{\circ}$. This indicate that ZnO, AZO OMO structure show the crystalline peak. Average transmittance of visible region was over 75%, while that of infrared region was under 20%. Energy band gap of OMO layer was increased with increasing thickness of Ag layer. As a result total transmittance was decreased.

Keywords

References

  1. S. H. Mohamed, Journal of Physics and Chemistry of Solids, 69, 2378 (2008). https://doi.org/10.1016/j.jpcs.2008.03.019
  2. R. L. Hoffman, B. J. Norris, and J. F. Wager, Appl. Phys., 82, 733 (2003).
  3. J. F. Wager, Science, 300, 1245 (2003). https://doi.org/10.1126/science.1085276
  4. W. T. Lim, S. H. Kim, Y. L. Wang, J. W. Lee, D. P. Norton, and S. J. Pearton, J. Vac. Sci. Technol. B, 26 (2008).
  5. S. Y. Kuo, K. C. Liu, F. I. Lai, J. F. Yang, W. C. Chen, M. Y. Hsieh, H. I. Lin, and W. T. Lin, Microelectron. Reliab., 50, 730 (2010). https://doi.org/10.1016/j.microrel.2010.01.042
  6. K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, and H. Hosono, Nature, 432, 488 (2004). https://doi.org/10.1038/nature03090
  7. H. Yabuta, M. Sano, K. Abe, T. Aiba, T. Den, H. Kumomi, K. Nomura, T. Kamiya, and H. Hosono, Appl. Phys., 89, 112123 (2006).
  8. K. Nomura, T. Kamiya, H. Ohta, T. Uruga, M. Hirano, and H. Hosono, Physical Review B, 75, 035212 (2007). https://doi.org/10.1103/PhysRevB.75.035212
  9. T. Iwasaki, H. Itagaki, T. Den, H. Kumomi, K. Nomura, T. Kamiya, H. Hosono, Appl. Phys. Lett., 90, 242114 (2007). https://doi.org/10.1063/1.2749177
  10. H. Kumomi, K. Nomura, T. Kamiya, and H. Hosono, Thin Solid Films, 516, 1516 (2008). https://doi.org/10.1016/j.tsf.2007.03.161
  11. N. Itagaki, T. Iwasaki, H. Kumomi, T. Den, K. Nomura, T. Kamiya, and H. Hosono, Phys. Stat. Sol., 205, 1915 (2008). https://doi.org/10.1002/pssa.200778909
  12. H. Hosono, Journal of Non-Crystalline Solids, 352, 851 (2006). https://doi.org/10.1016/j.jnoncrysol.2006.01.073
  13. A. Suresh, P. Gollakota, P. Wellenius, A. Dhawan, and J.F. Muth, Thin Solid Films, 516, 1326 (2008). https://doi.org/10.1016/j.tsf.2007.03.153
  14. X. Chen, W. Guan, G. Fang, and X. Z. Zhao, Appl. Surf. Sci., 252, 1561 (2005). https://doi.org/10.1016/j.apsusc.2005.02.137