References
- Alarcon-Ruiz, L., Platret, G., Massieu, E., & Ehrlacher, A. (2005). The use of thermal analysis in assessing the effect of temperature on a cement paste. Cement and Concrete Research, 35(3), 609-613. https://doi.org/10.1016/j.cemconres.2004.06.015
- Alawad, O., Alhozaimy, A., Jaafar, M., Al-Negheimish, A., & Aziz, F. (2014). Microstructure analyses of autoclaved ground dune sand-Portland cement paste. Construction and Building Materials, 65, 14-19. https://doi.org/10.1016/j.conbuildmat.2014.04.040
- Alawad, O. A., Alhoziamy, A., Jaafar, M. S., Aziz, A., Noor, F., & Al-Negheimish, A. (2015). Blended cement containing high volume ground dune sand and ground granulated blast furnace slag for autoclave concrete industry. Applied Mechanics and Materials, 754-755(1), 395-399. https://doi.org/10.4028/www.scientific.net/AMM.754-755.395
- Alhozaimy, A., Al-Negheimish, A., Alawad, O., Jaafar, M., & Noorzaei, J. (2012). Binary and ternary effects of ground dune sand and blast furnace slag on the compressive strength of mortar. Cement & Concrete Composites, 34(6), 734-738. https://doi.org/10.1016/j.cemconcomp.2012.03.002
- Assarsson, G. O., & Rydberg, E. (1956). Hydrothermal reactions between calcium hydroxide and amorphous silica. The Journal of Physical Chemistry, 60(4), 397-404. https://doi.org/10.1021/j150538a004
- Bakharev, T., Sanjayan, J., & Cheng, Y.-B. (1999). Effect of elevated temperature curing on properties of alkali-activated slag concrete. Cement and Concrete Research, 29(10), 1619-1625. https://doi.org/10.1016/S0008-8846(99)00143-X
- Berardi, M. C., Chiocchio, G., & Collepardi, M. (1975). The influence of precuring on the autoclave hydration of quartztricalcium silicate mixtures. Cement and Concrete Research, 5(5), 481-487. https://doi.org/10.1016/0008-8846(75)90022-8
- Bresson, B., Meducin, F., Zanni, H., &Noik, C. (2002). Hydration of tricalcium silicate (C3S) at high temperature and high pressure. Journal of materials science, 37(24), 5355-5365. https://doi.org/10.1023/A:1021093528888
- Chae, S. R., Moon, J., Yoon, S., Bae, S., Levitz, P., Winarski, R., & Monteiro, P. J. (2013). Advanced nanoscale characterization of cement based materials using X-ray synchrotron radiation: a review. International Journal of Concrete Structures and Materials, 7(2), 95-110. https://doi.org/10.1007/s40069-013-0036-1
- Divsholi, B. S., Lim, T. Y. D., & Teng, S. (2014). Durability properties and microstructure of ground granulated blast furnace slag cement concrete. International Journal of Concrete Structures and Materials, 8(2), 157-164. https://doi.org/10.1007/s40069-013-0063-y
- Eilers, L. H., Nelson, E. B., & Moran, L. K. (1983). Hightemperature cement compositions-pectolite, scawtite, truscottite, or xonotlite: Which do you want? Journal of Petroleum Technology, 35(7), 1373-1377. https://doi.org/10.2118/9286-PA
- Englehardt, J. D., & Peng, C. (1995). Pozzolanic filtration/solidification of radionuclides in nuclear reactor cooling water. Waste Management, 15(8), 585-592. https://doi.org/10.1016/0956-053X(96)00015-3
- Erdogdu, S ., & Kurbetci, S. (2005). Influence of cement composition on the early age flexural strength of heat-treated mortar prisms. Cement & Concrete Composites, 27(7), 818-822. https://doi.org/10.1016/j.cemconcomp.2005.03.006
- Grabowski, E., & Gillott, J. (1989). Effect of replacement of silica flour with silica fume on engineering properties of oilwell cements at normal and elevated temperatures and pressures. Cement and Concrete Research, 19(3), 333-344. https://doi.org/10.1016/0008-8846(89)90023-9
- Gutteridge, W. A., & Dalziel, J. A. (1990). Filler cement: the effect of the secondary component on the hydration of Portland cement: part I. A fine non-hydraulic filler. Cement and Concrete Research, 20(5), 778-782. https://doi.org/10.1016/0008-8846(90)90011-L
- Hanson, J. (1963). Optimum steam curing procedure in precasting plants. ACI Journal Proceedings, 60(1), 75-100.
- Hewlett, P. (2003). Lea's chemistry of cement and concrete. Oxford, UK: Butterworth-Heinemann.
- Hope, B. B. (1981). Autoclaved concrete containing flyash. Cement and Concrete Research, 11(2), 227-233. https://doi.org/10.1016/0008-8846(81)90064-8
-
Jupe, A. C., Wilkinson, A. P., Luke, K., & Funkhouser, G. P. (2008). Class H cement hydration at
$180^{\circ}C$ and high pressure in the presence of added silica. Cement and Concrete Research, 38(5), 660-666. https://doi.org/10.1016/j.cemconres.2007.12.004 - Kalousek, G. L. (1954). Studies on the cementious phases of autoclaved concrete products made of different raw materials. ACI Journal Proceedings, 50(1), 365-378.
- Kar, A., Ray, I., Halabe, U. B., Unnikrishnan, A., & Dawson- Andoh, B. (2014). Characterizations and quantitative estimation of alkali-activated binder paste from microstructures. International Journal of Concrete Structures and Materials, 8(3), 213-228. https://doi.org/10.1007/s40069-014-0069-0
- Kjellsen, K. O., Detwiler, R. J., & Gjorv, O. E. (1991). Development of microstructures in plain cement pastes hydrated at different temperatures. Cement and Concrete Research, 21(1), 179-189. https://doi.org/10.1016/0008-8846(91)90044-I
-
Klimesch, D. S., & Ray, A. (1998). Hydrogarnet formation during autoclaving at
$180^{\circ}C$ in unstirred metakaolin-limequartz slurries. Cement and Concrete Research, 28(8), 1109-1117. https://doi.org/10.1016/S0008-8846(98)00088-X - Klimesch, D. S., Ray, A., & Sloane, B. (1996). Autoclaved cement-quartz pastes: the effects on chemical and physical properties when using ground quartz with different surface areas part I: quartz of wide particle size distribution. Cement and Concrete Research, 26(9), 1399-1408. https://doi.org/10.1016/0008-8846(96)00117-2
- Kolakowski, K., De Preter, W., Van Gemert, D., Lamberts, L., & Van Rickstal, F. (1994). Low shrinkage cement based building components. Cement and Concrete Research, 24(4), 765-775. https://doi.org/10.1016/0008-8846(94)90202-X
- Kondo, R., Abo-El-Enein, S. A., & Daimon, M. (1975). Kinetics and mechanisms of hydrothermal reaction of granulated blast furnace slag. Bulletin of the Chemical Society of Japan, 48(1), 222-226. https://doi.org/10.1246/bcsj.48.222
-
Kyritsis, K., Meller, N., & Hall, C. (2009). Chemistry and morphology of hydrogarnets formed in cement based CASH hydroceramics cured at
$200^{\circ}C\;to\;350^{\circ}C$ . Journal of the American Ceramic Society, 92(5), 1105-1111. https://doi.org/10.1111/j.1551-2916.2009.02958.x - Lange, F., Mortel, H., & Rudert, V. (1997). Dense packing of cement pastes and resulting consequences on mortar properties. Cement and Concrete Research, 27(10), 1481-1488. https://doi.org/10.1016/S0008-8846(97)00189-0
- Liu, B., Xie, Y., & Li, J. (2005). Influence of steam curing on the compressive strength of concrete containing supplementary cementing materials. Cement and Concrete Research, 35(5), 994-998. https://doi.org/10.1016/j.cemconres.2004.05.044
-
Luke, K. (2004). Phase studies of pozzolanic stabilized calcium silicate hydrates at
$180^{\circ}C$ . Cement and Concrete Research, 34(9), 1725-1732. https://doi.org/10.1016/j.cemconres.2004.05.021 - Mehta, P. K., & Monteiro, P. J. (2006). Concrete: microstructure, properties, and materials. New York, NY: The McGraw-Hill Companies Inc.
- Menzel, C. A. (1934). Strength and volume change of steamcured portland cement mortar and concrete. ACI Journal Proceedings, 31(11), 125-148.
- Mindess, S., Young, J. F., & Darwin, D. (1981). Concrete. Englewood Cliffs: Prentice-Hall.
- Mostafa, N. Y., Shaltout, A. A., Omar, H., & Abo-El-Enein, S. A. (2009). Hydrothermal synthesis and characterization of aluminium and sulfate substituted 1.1 nm tobermorites. Journal of Alloys and Compounds, 467(1), 332-337. https://doi.org/10.1016/j.jallcom.2007.11.130
- Murmu, M., & Singh, S. P. (2014). Hydration products, morphology and microstructure of activated slag cement. International Journal of Concrete Structures and Materials, 8(1), 61-68. https://doi.org/10.1007/s40069-013-0056-x
- Neville, A. M. (1973). Properties of concrete. London, UK: Pitman.
- Oner, A., & Akyuz, S. (2007). An experimental study on optimum usage of GGBS for the compressive strength of concrete. Cement & Concrete Composites, 29(6), 505-514. https://doi.org/10.1016/j.cemconcomp.2007.01.001
- Saikia, N., Kato, S., & Kojima, T. (2006). Thermogravimetric investigation on the chloride binding behaviour of MK-lime paste. Thermochimica Acta, 444(1), 16-25. https://doi.org/10.1016/j.tca.2006.02.012
- Sanders, L. D., & Smothers, W. J. (1957). Effect of tobermorite on the mechanical strength of autoclaved portland cementsilica mixtures*. ACI Journal Proceedings, 54(8), 127-139.
- Shi, C., & Hu, S. (2003). Cementitious properties of ladle slag fines under autoclave curing conditions. Cement and Concrete Research, 33(11), 1851-1856. https://doi.org/10.1016/S0008-8846(03)00211-4
- Singh, L. P., Goel, A., Bhattachharyya, S. K., Ahalawat, S., Sharma, U., & Mishra, G. (2015). Effect of morphology and dispersibility of silica nanoparticles on the mechanical behaviour of cement mortar. International Journal of Concrete Structures and Materials, 9(2), 207-217. https://doi.org/10.1007/s40069-015-0099-2
- Taylor, H. F. W. (1997). Cement chemistry. London, UK: Telford Services Ltd.
- Topcu, I. B., & Uygunoglu, T. (2007). Properties of autoclaved lightweight aggregate concrete. Building and Environment, 42(12), 4108-4116. https://doi.org/10.1016/j.buildenv.2006.11.024
- Wee, T. H., Suryavanshi, A. K., & Tin, S. S. (2000). Evaluation of rapid chloride permeability test (RCPT) results for concrete containing mineral admixtures. ACI Materials Journal, 97(2), 221-232.
- Wongkeo, W., Thongsanitgarn, P., & Chaipanich, A. (2012). Compressive strength and drying shrinkage of fly ashbottom ash-silica fume multi-blended cement mortars. Materials and Design, 36, 655-662. https://doi.org/10.1016/j.matdes.2011.11.043
- Yang, Q., Zhang, S., Huang, S., & He, Y. (2000). Effect of ground quartz sand on properties of high-strength concrete in the steam-autoclaved curing. Cement and Concrete Research, 30(12), 1993-1998. https://doi.org/10.1016/S0008-8846(00)00395-1
- Yazici, H. (2007). The effect of curing conditions on compressive strength of ultra high strength concrete with high volume mineral admixtures. Building and Environment, 42(5), 2083-2089. https://doi.org/10.1016/j.buildenv.2006.03.013
- Yazici, H., Yigiter, H., Karabulut, A. S., & Baradan, B. (2008). Utilization of fly ash and ground granulated blast furnace slag as an alternative silica source in reactive powder concrete. Fuel, 87(12), 2401-2407. https://doi.org/10.1016/j.fuel.2008.03.005
Cited by
- Evaluation of Pozzolanic Activity for Effective Utilization of Dredged Sea Soil vol.11, pp.4, 2015, https://doi.org/10.1007/s40069-017-0215-6
- Materials and Applications for Low-Cost Ceramic Membranes vol.9, pp.9, 2019, https://doi.org/10.3390/membranes9090105
- Enhancing carbonation and chloride resistance of autoclaved concrete by incorporating nano-CaCO3 vol.9, pp.1, 2020, https://doi.org/10.1515/ntrev-2020-0078
- Experimental Study on the Shear Strength of Dune Sand Concrete Beams vol.2020, pp.None, 2015, https://doi.org/10.1155/2020/8062691
- Effect of Mineral Admixtures on the Sulfate Resistance of High-Strength Piles Mortar vol.13, pp.16, 2015, https://doi.org/10.3390/ma13163500
- Experimental evaluation of the effort of dune sand replacement levels on flexural behaviour of reinforced beam vol.19, pp.5, 2015, https://doi.org/10.1080/13467581.2020.1751640
- Cyclic behavior and strength evaluation of RC columns with dune sand vol.47, pp.None, 2015, https://doi.org/10.1016/j.jobe.2021.103801