DOI QR코드

DOI QR Code

Effect of Autoclave Curing on the Microstructure of Blended Cement Mixture Incorporating Ground Dune Sand and Ground Granulated Blast Furnace Slag

  • Alawad, Omer Abdalla (Civil Engineering Department and Center of Excellence for Concrete Research and Testing, College of Engineering, King Saud University) ;
  • Alhozaimy, Abdulrahman (Civil Engineering Department and Center of Excellence for Concrete Research and Testing, College of Engineering, King Saud University) ;
  • Jaafar, Mohd Saleh (Civil Engineering Department, Faculty of Engineering, Universiti Putra Malaysia) ;
  • Aziz, Farah Nora Abdul (Civil Engineering Department, Faculty of Engineering, Universiti Putra Malaysia) ;
  • Al-Negheimish, Abdulaziz (Civil Engineering Department and Center of Excellence for Concrete Research and Testing, College of Engineering, King Saud University)
  • Received : 2014.06.07
  • Accepted : 2015.07.19
  • Published : 2015.09.30

Abstract

Investigating the microstructure of hardened cement mixtures with the aid of advanced technology will help the concrete industry to develop appropriate binders for durable building materials. In this paper, morphological, mineralogical and thermogravimetric analyses of autoclave-cured mixtures incorporating ground dune sand and ground granulated blast furnace slag as partial cementing materials were investigated. The microstructure analyses of hydrated products were conducted using scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), differential thermal analysis (DTA), thermo-graphic analysis (TGA) and X-ray diffraction (XRD). The SEM and EDX results demonstrated the formation of thin plate-like calcium silicate hydrate plates and a compacted microstructure. The DTA and TGA analyses revealed that the calcium hydroxide generated from the hydration binder materials was consumed during the secondary pozzolanic reaction. Residual crystalline silica was observed from the XRD analysis of all of the blended mixtures, indicating the presence of excess silica. A good correlation was observed between the compressive strength of the blended mixtures and the CaO/$SiO_2$ ratio of the binder materials.

Keywords

References

  1. Alarcon-Ruiz, L., Platret, G., Massieu, E., & Ehrlacher, A. (2005). The use of thermal analysis in assessing the effect of temperature on a cement paste. Cement and Concrete Research, 35(3), 609-613. https://doi.org/10.1016/j.cemconres.2004.06.015
  2. Alawad, O., Alhozaimy, A., Jaafar, M., Al-Negheimish, A., & Aziz, F. (2014). Microstructure analyses of autoclaved ground dune sand-Portland cement paste. Construction and Building Materials, 65, 14-19. https://doi.org/10.1016/j.conbuildmat.2014.04.040
  3. Alawad, O. A., Alhoziamy, A., Jaafar, M. S., Aziz, A., Noor, F., & Al-Negheimish, A. (2015). Blended cement containing high volume ground dune sand and ground granulated blast furnace slag for autoclave concrete industry. Applied Mechanics and Materials, 754-755(1), 395-399. https://doi.org/10.4028/www.scientific.net/AMM.754-755.395
  4. Alhozaimy, A., Al-Negheimish, A., Alawad, O., Jaafar, M., & Noorzaei, J. (2012). Binary and ternary effects of ground dune sand and blast furnace slag on the compressive strength of mortar. Cement & Concrete Composites, 34(6), 734-738. https://doi.org/10.1016/j.cemconcomp.2012.03.002
  5. Assarsson, G. O., & Rydberg, E. (1956). Hydrothermal reactions between calcium hydroxide and amorphous silica. The Journal of Physical Chemistry, 60(4), 397-404. https://doi.org/10.1021/j150538a004
  6. Bakharev, T., Sanjayan, J., & Cheng, Y.-B. (1999). Effect of elevated temperature curing on properties of alkali-activated slag concrete. Cement and Concrete Research, 29(10), 1619-1625. https://doi.org/10.1016/S0008-8846(99)00143-X
  7. Berardi, M. C., Chiocchio, G., & Collepardi, M. (1975). The influence of precuring on the autoclave hydration of quartztricalcium silicate mixtures. Cement and Concrete Research, 5(5), 481-487. https://doi.org/10.1016/0008-8846(75)90022-8
  8. Bresson, B., Meducin, F., Zanni, H., &Noik, C. (2002). Hydration of tricalcium silicate (C3S) at high temperature and high pressure. Journal of materials science, 37(24), 5355-5365. https://doi.org/10.1023/A:1021093528888
  9. Chae, S. R., Moon, J., Yoon, S., Bae, S., Levitz, P., Winarski, R., & Monteiro, P. J. (2013). Advanced nanoscale characterization of cement based materials using X-ray synchrotron radiation: a review. International Journal of Concrete Structures and Materials, 7(2), 95-110. https://doi.org/10.1007/s40069-013-0036-1
  10. Divsholi, B. S., Lim, T. Y. D., & Teng, S. (2014). Durability properties and microstructure of ground granulated blast furnace slag cement concrete. International Journal of Concrete Structures and Materials, 8(2), 157-164. https://doi.org/10.1007/s40069-013-0063-y
  11. Eilers, L. H., Nelson, E. B., & Moran, L. K. (1983). Hightemperature cement compositions-pectolite, scawtite, truscottite, or xonotlite: Which do you want? Journal of Petroleum Technology, 35(7), 1373-1377. https://doi.org/10.2118/9286-PA
  12. Englehardt, J. D., & Peng, C. (1995). Pozzolanic filtration/solidification of radionuclides in nuclear reactor cooling water. Waste Management, 15(8), 585-592. https://doi.org/10.1016/0956-053X(96)00015-3
  13. Erdogdu, S ., & Kurbetci, S. (2005). Influence of cement composition on the early age flexural strength of heat-treated mortar prisms. Cement & Concrete Composites, 27(7), 818-822. https://doi.org/10.1016/j.cemconcomp.2005.03.006
  14. Grabowski, E., & Gillott, J. (1989). Effect of replacement of silica flour with silica fume on engineering properties of oilwell cements at normal and elevated temperatures and pressures. Cement and Concrete Research, 19(3), 333-344. https://doi.org/10.1016/0008-8846(89)90023-9
  15. Gutteridge, W. A., & Dalziel, J. A. (1990). Filler cement: the effect of the secondary component on the hydration of Portland cement: part I. A fine non-hydraulic filler. Cement and Concrete Research, 20(5), 778-782. https://doi.org/10.1016/0008-8846(90)90011-L
  16. Hanson, J. (1963). Optimum steam curing procedure in precasting plants. ACI Journal Proceedings, 60(1), 75-100.
  17. Hewlett, P. (2003). Lea's chemistry of cement and concrete. Oxford, UK: Butterworth-Heinemann.
  18. Hope, B. B. (1981). Autoclaved concrete containing flyash. Cement and Concrete Research, 11(2), 227-233. https://doi.org/10.1016/0008-8846(81)90064-8
  19. Jupe, A. C., Wilkinson, A. P., Luke, K., & Funkhouser, G. P. (2008). Class H cement hydration at $180^{\circ}C$ and high pressure in the presence of added silica. Cement and Concrete Research, 38(5), 660-666. https://doi.org/10.1016/j.cemconres.2007.12.004
  20. Kalousek, G. L. (1954). Studies on the cementious phases of autoclaved concrete products made of different raw materials. ACI Journal Proceedings, 50(1), 365-378.
  21. Kar, A., Ray, I., Halabe, U. B., Unnikrishnan, A., & Dawson- Andoh, B. (2014). Characterizations and quantitative estimation of alkali-activated binder paste from microstructures. International Journal of Concrete Structures and Materials, 8(3), 213-228. https://doi.org/10.1007/s40069-014-0069-0
  22. Kjellsen, K. O., Detwiler, R. J., & Gjorv, O. E. (1991). Development of microstructures in plain cement pastes hydrated at different temperatures. Cement and Concrete Research, 21(1), 179-189. https://doi.org/10.1016/0008-8846(91)90044-I
  23. Klimesch, D. S., & Ray, A. (1998). Hydrogarnet formation during autoclaving at $180^{\circ}C$ in unstirred metakaolin-limequartz slurries. Cement and Concrete Research, 28(8), 1109-1117. https://doi.org/10.1016/S0008-8846(98)00088-X
  24. Klimesch, D. S., Ray, A., & Sloane, B. (1996). Autoclaved cement-quartz pastes: the effects on chemical and physical properties when using ground quartz with different surface areas part I: quartz of wide particle size distribution. Cement and Concrete Research, 26(9), 1399-1408. https://doi.org/10.1016/0008-8846(96)00117-2
  25. Kolakowski, K., De Preter, W., Van Gemert, D., Lamberts, L., & Van Rickstal, F. (1994). Low shrinkage cement based building components. Cement and Concrete Research, 24(4), 765-775. https://doi.org/10.1016/0008-8846(94)90202-X
  26. Kondo, R., Abo-El-Enein, S. A., & Daimon, M. (1975). Kinetics and mechanisms of hydrothermal reaction of granulated blast furnace slag. Bulletin of the Chemical Society of Japan, 48(1), 222-226. https://doi.org/10.1246/bcsj.48.222
  27. Kyritsis, K., Meller, N., & Hall, C. (2009). Chemistry and morphology of hydrogarnets formed in cement based CASH hydroceramics cured at $200^{\circ}C\;to\;350^{\circ}C$. Journal of the American Ceramic Society, 92(5), 1105-1111. https://doi.org/10.1111/j.1551-2916.2009.02958.x
  28. Lange, F., Mortel, H., & Rudert, V. (1997). Dense packing of cement pastes and resulting consequences on mortar properties. Cement and Concrete Research, 27(10), 1481-1488. https://doi.org/10.1016/S0008-8846(97)00189-0
  29. Liu, B., Xie, Y., & Li, J. (2005). Influence of steam curing on the compressive strength of concrete containing supplementary cementing materials. Cement and Concrete Research, 35(5), 994-998. https://doi.org/10.1016/j.cemconres.2004.05.044
  30. Luke, K. (2004). Phase studies of pozzolanic stabilized calcium silicate hydrates at $180^{\circ}C$. Cement and Concrete Research, 34(9), 1725-1732. https://doi.org/10.1016/j.cemconres.2004.05.021
  31. Mehta, P. K., & Monteiro, P. J. (2006). Concrete: microstructure, properties, and materials. New York, NY: The McGraw-Hill Companies Inc.
  32. Menzel, C. A. (1934). Strength and volume change of steamcured portland cement mortar and concrete. ACI Journal Proceedings, 31(11), 125-148.
  33. Mindess, S., Young, J. F., & Darwin, D. (1981). Concrete. Englewood Cliffs: Prentice-Hall.
  34. Mostafa, N. Y., Shaltout, A. A., Omar, H., & Abo-El-Enein, S. A. (2009). Hydrothermal synthesis and characterization of aluminium and sulfate substituted 1.1 nm tobermorites. Journal of Alloys and Compounds, 467(1), 332-337. https://doi.org/10.1016/j.jallcom.2007.11.130
  35. Murmu, M., & Singh, S. P. (2014). Hydration products, morphology and microstructure of activated slag cement. International Journal of Concrete Structures and Materials, 8(1), 61-68. https://doi.org/10.1007/s40069-013-0056-x
  36. Neville, A. M. (1973). Properties of concrete. London, UK: Pitman.
  37. Oner, A., & Akyuz, S. (2007). An experimental study on optimum usage of GGBS for the compressive strength of concrete. Cement & Concrete Composites, 29(6), 505-514. https://doi.org/10.1016/j.cemconcomp.2007.01.001
  38. Saikia, N., Kato, S., & Kojima, T. (2006). Thermogravimetric investigation on the chloride binding behaviour of MK-lime paste. Thermochimica Acta, 444(1), 16-25. https://doi.org/10.1016/j.tca.2006.02.012
  39. Sanders, L. D., & Smothers, W. J. (1957). Effect of tobermorite on the mechanical strength of autoclaved portland cementsilica mixtures*. ACI Journal Proceedings, 54(8), 127-139.
  40. Shi, C., & Hu, S. (2003). Cementitious properties of ladle slag fines under autoclave curing conditions. Cement and Concrete Research, 33(11), 1851-1856. https://doi.org/10.1016/S0008-8846(03)00211-4
  41. Singh, L. P., Goel, A., Bhattachharyya, S. K., Ahalawat, S., Sharma, U., & Mishra, G. (2015). Effect of morphology and dispersibility of silica nanoparticles on the mechanical behaviour of cement mortar. International Journal of Concrete Structures and Materials, 9(2), 207-217. https://doi.org/10.1007/s40069-015-0099-2
  42. Taylor, H. F. W. (1997). Cement chemistry. London, UK: Telford Services Ltd.
  43. Topcu, I. B., & Uygunoglu, T. (2007). Properties of autoclaved lightweight aggregate concrete. Building and Environment, 42(12), 4108-4116. https://doi.org/10.1016/j.buildenv.2006.11.024
  44. Wee, T. H., Suryavanshi, A. K., & Tin, S. S. (2000). Evaluation of rapid chloride permeability test (RCPT) results for concrete containing mineral admixtures. ACI Materials Journal, 97(2), 221-232.
  45. Wongkeo, W., Thongsanitgarn, P., & Chaipanich, A. (2012). Compressive strength and drying shrinkage of fly ashbottom ash-silica fume multi-blended cement mortars. Materials and Design, 36, 655-662. https://doi.org/10.1016/j.matdes.2011.11.043
  46. Yang, Q., Zhang, S., Huang, S., & He, Y. (2000). Effect of ground quartz sand on properties of high-strength concrete in the steam-autoclaved curing. Cement and Concrete Research, 30(12), 1993-1998. https://doi.org/10.1016/S0008-8846(00)00395-1
  47. Yazici, H. (2007). The effect of curing conditions on compressive strength of ultra high strength concrete with high volume mineral admixtures. Building and Environment, 42(5), 2083-2089. https://doi.org/10.1016/j.buildenv.2006.03.013
  48. Yazici, H., Yigiter, H., Karabulut, A. S., & Baradan, B. (2008). Utilization of fly ash and ground granulated blast furnace slag as an alternative silica source in reactive powder concrete. Fuel, 87(12), 2401-2407. https://doi.org/10.1016/j.fuel.2008.03.005

Cited by

  1. Evaluation of Pozzolanic Activity for Effective Utilization of Dredged Sea Soil vol.11, pp.4, 2015, https://doi.org/10.1007/s40069-017-0215-6
  2. Materials and Applications for Low-Cost Ceramic Membranes vol.9, pp.9, 2019, https://doi.org/10.3390/membranes9090105
  3. Enhancing carbonation and chloride resistance of autoclaved concrete by incorporating nano-CaCO3 vol.9, pp.1, 2020, https://doi.org/10.1515/ntrev-2020-0078
  4. Experimental Study on the Shear Strength of Dune Sand Concrete Beams vol.2020, pp.None, 2015, https://doi.org/10.1155/2020/8062691
  5. Effect of Mineral Admixtures on the Sulfate Resistance of High-Strength Piles Mortar vol.13, pp.16, 2015, https://doi.org/10.3390/ma13163500
  6. Experimental evaluation of the effort of dune sand replacement levels on flexural behaviour of reinforced beam vol.19, pp.5, 2015, https://doi.org/10.1080/13467581.2020.1751640
  7. Cyclic behavior and strength evaluation of RC columns with dune sand vol.47, pp.None, 2015, https://doi.org/10.1016/j.jobe.2021.103801