Acknowledgement
Supported by : Ministry of Land, Infrastructure and Transport
References
- Achenbach, J. D. (2000). Quantitative nondestructive evaluation. International Journal of Solids and Structures, 37(1-2), 13-27. https://doi.org/10.1016/S0020-7683(99)00074-8
- Achenbach, J. D. (2002). Modeling for quantitative non-destructive evaluation. Ultrasonics, 40(1-8), 1-10. https://doi.org/10.1016/S0041-624X(02)00083-5
- Achenbach, J. D., Keer, L. M., & Mendelsohn, D. A. (1980). Elastodynamic analysis of an edge crack. Journal of Applied Mechanics, 47(3), 551-556. https://doi.org/10.1115/1.3153730
- ACI Committee 228 (1998). Nondestructive test methods for evaluation of concrete in structures. Report ACI 228.2R-98, American Concrete Institute, Farmington Hills, MI.
- Angel, Y. C., & Achenbach, J. D. (1984). Reflection and transmission of obliquely incident Rayleigh waves by a surface-breaking crack. The Journal of the Acoustical Society of America, 75(2), 313-319. https://doi.org/10.1121/1.390473
- ASTM C39. (2014). Standard test method for compressive strength of cylindrical concrete specimens. West Conshohocken: ASTM International.
- Dong, B., Xing, F., & Li, Z. (2011). Cement-based piezoelectric ceramic composite and its seosor applications in civil engineeriing. ACI Materials Journal, 108(5), 543-549.
- ElSafty, A., & Abdel-Mohti, A. (2013). Investigation of likelihood of cracking in reinforced concrete bridge decks. International Journal of Concrete Structures and Materials, 7(1), 79-93. https://doi.org/10.1007/s40069-013-0034-3
- Graff, K. (1991). Wave motion in elastic solid. New York: Dover Publications.
- Gucunski, N., Imani, A., Romero, F., Nazarian. S., Yuan, D., Wiggenhauser, H., et al. (2013). Nondestructive testig to identify concrete bridge deck deterioration. SHRP 2 Report S2-R06A-RR-1.
- Hevin, G., Abraham, O., Petersen, H. A., & Campillo, M. (1998). Characterization of surface cracks with Rayleigh waves: A numerical model. NDT and E International, 31(4), 289-298. https://doi.org/10.1016/S0963-8695(98)80013-3
- Hou, S., Zhang, H. B., & Ou, J. P. (2012). A PZT-based smart aggregate for compressive seismic stress monitoring. Smart Materials and Structures, 21, 105035. https://doi.org/10.1088/0964-1726/21/10/105035
- Hou, S., Zhang, H. B., & Ou, J. P. (2013). A PZT-based smart aggregate for seismic shear stress monitoring. Smart Materials and Structures, 22, 065012. https://doi.org/10.1088/0964-1726/22/6/065012
- Jung, M. J. (2005). Shear wave velocity measurements of normally consolidated kaolinite using bender elements. Master of Science in Engineering, The University of Texas at Austin, Austin.
- Kee, S.-H. (2011). Evaluation of crack-depth in concrete using non-contact surface wave transmission measurement. Doctor of Philosophy, The University of Texas at Austin, Austin, TX.
- Kee, S.-H., & Zhu, J. (2010). Using air-coupled sensors to determine the depth of a surface-breaking crack in concrete. The Journal of the Acoustical Society of America, 127(3), 1279-1287. https://doi.org/10.1121/1.3298431
- Kee, S.-H., & Zhu, J. (2011). Effects of sensor locations on aircoupled surface wave transmission measurements. Ultrasonics, Ferroelectrics and Frequency Control, IEEE Transactions on, 58(2), 427-436. https://doi.org/10.1109/TUFFC.2011.1820
- Kee, S.-H., & Zhu, J. (2013). Using piezoelectric sensors for ultrasonic pulse velocity measurements in concrete. Smart Materials and Structures, 22(11), 115016. https://doi.org/10.1088/0964-1726/22/11/115016
- Liao, W. I., Wang, J. X., Song, G., Gu, H., Olmi, C., Mo, Y. L., et al. (2011). Structural health monitoring of concrete columns subjected to seismic excitations using piezoceramic-based sensors. Smart Materials and Structures, 20(12), 125015. https://doi.org/10.1088/0964-1726/20/12/125015
- Masserey, B., & Mazza, E. (2007). Ultrasonic sizing of short surface cracks. Ultrasonics, 46(3), 195-204. https://doi.org/10.1016/j.ultras.2007.02.001
- McLaskey, G. C., & Glaser, S. D. (2010). Hertzian impact: Experimental study of the force pulse and resulting stress waves. Journal of the Acoustical Society of America, 128(3), 1087-1096. https://doi.org/10.1121/1.3466847
- Mendelsohn, D. A., Achenbach, J. D., & Keer, L. M. (1980). Scattering of elastic waves by a surface-breaking crack. Wave Motion, 2(3), 277-292. https://doi.org/10.1016/0165-2125(80)90008-6
- Nazarian, S., & Desai, M. R. (1993). Automated surface wave method: Filed testing. Journal of Geotechnical Engineering, ASCE, 119(7), 1094-1111. https://doi.org/10.1061/(ASCE)0733-9410(1993)119:7(1094)
- Nazarian, S., & Stokoe, K. H., II (1986). In-situ determination of elastic moduli of pavement systems by spectral-analysisof-surface-wave method (practical aspects). Research Report 368-1F, University of Texas at Austin, Center for Transportation Research.
- Okafor, A. C., Chandrashekhara, K., & Jiang, Y. P. (1996). Delamination prediction in composite beams with built-in piezoelectric devices using modal analysis and neural network. Smart Materials and Structures, 5(3), 338-347. https://doi.org/10.1088/0964-1726/5/3/012
- Popovics, J. S., Song, W.-J., Ghandehari, M., Subramaniam, K. V., Achenbach, J. D., & Shah, S. P. (2000). Application of surface wave transmission measurements for crack depth determination in concrete. ACI Materials Journal, 97(2), 127-135.
- Shin, S. W., Zhu, J., Min, J., & Popovics, J. S. (2008). Crack depth estimation in concrete using energy transmission of surface waves. ACI Materials Journal, 105(5), 510-516.
- Soltani, A., Harries, K. A., & Shahrooz, B. M. (2013). Crack opening behavior of concrete reinforced with high strength reinforcing steel. International Journal of Concrete Structures and Materials, 7(4), 253-264. https://doi.org/10.1007/s40069-013-0054-z
- Song, G. B., Gu, H. C., & Mo, Y. L. (2008). Smart aggregates: multi-functional sensors for concrete structures-a tutorial and a review. Smart Materials and Structures, 17(3), 033001. https://doi.org/10.1088/0964-1726/17/3/033001
- Song, G., Gu, H., Mo, Y. L., Hsu, T. T. C., & Dhonde, H. (2007). Concrete structural health monitoring using embedded piezoceramic transducers.’’. Smart Materials and Structures, 16(4), 959-968. https://doi.org/10.1088/0964-1726/16/4/003
- Song, G., Mo, Y. L., Otero, K., & Gu, H. (2006). Health monitoring and rehabilitation of a concrete structure using intelligent materials. Smart Materrials & Structures, 15(2), 309-314. https://doi.org/10.1088/0964-1726/15/2/010
- Song, W.-J., Popovics, J. S., Aldrin, J. C., & Shah, S. P. (2003). Measurement of surface wave transmission coefficient across surface-breaking cracks and notches in concrete. The Journal of the Acoustical Society of America, 113(2), 717-725. https://doi.org/10.1121/1.1537709
- Wang, C. S., Wu, F., & Chang, F. K. (2001). Structural health monitoring from fiber-reinforced composites to steel reinforced concrete. Smart Materials and Structures, 10(3), 548-552. https://doi.org/10.1088/0964-1726/10/3/318
Cited by
- Punching Behaviour of Reinforced Concrete Footings at Testing and According to Eurocode 2 and fib Model Code 2010 vol.11, pp.4, 2015, https://doi.org/10.1007/s40069-017-0213-8
- PZT sensor array for local and distributed measurements of localized cracking in concrete vol.27, pp.7, 2015, https://doi.org/10.1088/1361-665x/aaca4d
- Detecting concealed damage in asphalt pavement based on a composite lead zirconate titanate/polyvinylidene fluoride aggregate vol.26, pp.11, 2015, https://doi.org/10.1002/stc.2452
- Stress and damage localization monitoring in fiber-reinforced concrete using surface-mounted PZT sensors vol.31, pp.2, 2015, https://doi.org/10.1088/1361-6501/ab466d
- Prototype Design of Cement/Emulsified Asphalt Based Piezoelectric Composites and its Potential Application in Vehicle Speed Sensing vol.2675, pp.9, 2015, https://doi.org/10.1177/03611981211004580