DOI QR코드

DOI QR Code

AN IMPROVED ELECTRICAL-CONDUCTANCE SENSOR FOR VOID-FRACTION MEASUREMENT IN A HORIZONTAL PIPE

  • KO, MIN SEOK (Nuclear Safety Research Center, Chung-Ang University) ;
  • LEE, BO AN (Institute for Nuclear Science and Technology, Jeju National University) ;
  • WON, WOO YOUN (Department of Nuclear and Energy Engineering, Jeju National University) ;
  • LEE, YEON GUN (Department of Nuclear and Energy Engineering, Jeju National University) ;
  • JERNG, DONG WOOK (Nuclear Safety Research Center, Chung-Ang University) ;
  • KIM, SIN (School of Energy Systems Engineering, Chung-Ang University)
  • 투고 : 2015.04.14
  • 심사 : 2015.06.29
  • 발행 : 2015.12.25

초록

The electrical-impedance method has been widely used for void-fraction measurement in two-phase flow due to its many favorable features. In the impedance method, the response characteristics of the electrical signal heavily depend upon flow pattern, as well as phasic volume. Thus, information on the flow pattern should be given for reliable void-fraction measurement. This study proposes an improved electrical-conductance sensor composed of a three-electrode set of adjacent and opposite electrodes. In the proposed sensor, conductance readings are directly converted into the flow pattern through a specified criterion and are consecutively used to estimate the corresponding void fraction. Since the flow pattern and the void fraction are evaluated by reading conductance measurements, complexity of data processing can be significantly reduced and real-time information provided. Before actual applications, several numerical calculations are performed to optimize electrode and insulator sizes, and optimal design is verified by static experiments. Finally, the proposed sensor is applied for air-water two-phase flow in a horizontal loop with a 40-mm inner diameter and a 5-m length, and its measurement results are compared with those of a wire-mesh sensor.

키워드

과제정보

연구 과제 주관 기관 : National Research Foundation of Korea (NRF), Chung-Ang University

참고문헌

  1. A.A. Kendoush, Z.A. Sarkis, Void fraction measurement by Xray absorption, Exp. Therm. Fluid Sci. 25 (2002) 615-621. https://doi.org/10.1016/S0894-1777(01)00117-0
  2. P. Stahl, P. Rudolf von Rohr, On the accuracy of void fraction measurements by single-beam gamma-densitometry for gas-liquid two-phase flows in pipes, Exp. Therm. Fluid Sci. 28 (2004) 533-544. https://doi.org/10.1016/j.expthermflusci.2003.08.003
  3. J. Vejrazka, M. Vecer, S. Orvalho, P. Sechet, M.C. Ruzicka, A. Cartellier, Measurement accuracy of a mono-fiber optical probe in a bubbly flow, Int. J. Multiph. Flow 36 (2010) 533-534. https://doi.org/10.1016/j.ijmultiphaseflow.2010.03.007
  4. S. Paranjape, S.N. Ritchey, S.V. Garimella, Electrical impedance-based void fraction measurement and flow regime identification in microchannel flows under adiabatic conditions, Int. J. Multiph. Flow 42 (2012) 175-183. https://doi.org/10.1016/j.ijmultiphaseflow.2012.02.010
  5. J.P. Schlegel, S. Miwa, M. Griffiths, T. Hibiki, M. Ishii, Development of impedance void meter for evaluation of flow symmetry, Ann. Nucl. Energy 63 (2014) 525-532. https://doi.org/10.1016/j.anucene.2013.08.026
  6. Z. Zhang, M. Bieberle, F. Barthel, L. Szalinski, U. Hampel, Investigation of upward cocurrent gas-liquid pipe flow using ultrafast X-ray tomography and wire-mesh sensor, Flow Meas. Instrum. 32 (2013) 111-118. https://doi.org/10.1016/j.flowmeasinst.2013.04.007
  7. R.E. Vieira, N.R. Kesana, B.S. McLaury, S.A. Shirazi, C.F. Torres, E. Schleicher, U. Hampel, Experimental investigation of the effect of $90^{\circ}$ standard elbow on horizontal gas-liquid stratified and annular flow characteristics using dual wire-mesh sensors, Exp. Therm. Fluid Sci. 59 (2014) 72-87. https://doi.org/10.1016/j.expthermflusci.2014.08.001
  8. D.C. Lowe, K.S. Rezkallah, Flow regime identification in microgravity two-phase flows using void fraction signals, Int. J. Multiph. Flow 17 (1999) 433-457.
  9. W.H. Ahmed, Capacitance sensors for void-fraction measurements and flow-pattern identification in air-oil twophase flow, IEEE Sensors J. 6 (2006) 1153-1163.
  10. H. Caniere, C. T'Joen, A. Willockx, M. De Paepe, Capacitance signal analysis of horizontal two-phase flow in a small diameter tube, Exp. Therm. Fluid Sci. 32 (2008) 892-904. https://doi.org/10.1016/j.expthermflusci.2007.10.011
  11. S. Kim, J.S. Lee, K.Y. Kim, K.H. Kang, B.J. Yun, An approximate formula for the capacitance-void fraction relationship for annular flows, Meas. Sci. Technol. 20 (2009) 125404. https://doi.org/10.1088/0957-0233/20/12/125404
  12. K. De Kerpel, B. Ameel, S. De Schampheleire, C. T'Joen, H. Caniere, M. De Paepe, Calibration of a capacitive void fraction sensor for small diameter tubes based on capacitive signal features, Appl. Therm. Eng. 63 (2014) 77-83. https://doi.org/10.1016/j.applthermaleng.2013.11.006
  13. P. Andreussi, A. Di Donfrancesco, M. Messia, An impedance method for the measurement of liquid hold-up in two-phase flow, Int. J. Multiph. Flow 14 (1988) 777-785. https://doi.org/10.1016/0301-9322(88)90074-2
  14. N.A. Tsochatzidis, D.K. Karapantsios, M.V. Kostoglou, A.J. Karabelas, A conductance probe for measuring liquid fraction in pipes and packed beds, Int. J. Multiph. Flow 18 (1992) 653-667. https://doi.org/10.1016/0301-9322(92)90037-H
  15. M. Fossa, Design and performance of a conductance probe for measuring the liquid fraction in two-phase gas-liquid flows, Flow Meas. Instrum. 9 (1998) 103-109. https://doi.org/10.1016/S0955-5986(98)00011-9
  16. J.R. Kim, Y.C. Ahn, M.H. Kim, Measurement of void fraction and bubble speed of slug flow with three-ring conductance probes, Flow Meas. Instrum. 20 (2009) 103-109. https://doi.org/10.1016/j.flowmeasinst.2009.02.001
  17. J.J.M. Geraets, J.C. Borst, A capacitance sensor for two-phase void fraction measurement and flow pattern identification, Int. J. Multiph. Flow 14 (1988) 305-320. https://doi.org/10.1016/0301-9322(88)90046-8
  18. J. Ye, L. Peng, W. Wang, W. Zhou, Optimization of helical capacitance sensor for void fraction measurement of gas-liquid two-phase flow in a small diameter tube, IEEE Sensors J. 11 (2011) 2189-2196. https://doi.org/10.1109/JSEN.2011.2116115
  19. H.C. Yang, D.K. Kim, M.H. Kim, Void fraction measurement using impedance method, Flow Meas. Instrum. 14 (2003) 151-160. https://doi.org/10.1016/S0955-5986(03)00020-7
  20. S. Huang, X. Zhang, D. Wang, Z. Lin, Equivalent water layer height (EWLH) measurement by a single-wire capacitance probe in gas-liquid flows, Int. J. Multiph. Flow 34 (2008) 809-818. https://doi.org/10.1016/j.ijmultiphaseflow.2008.03.004
  21. D. Barnea, Transition from annular flow and dispersed bubble flow - unified models for the whole range of pipe inclinations, Int. J. Multiph. Flow 12 (1986) 733-744. https://doi.org/10.1016/0301-9322(86)90048-0
  22. M.S. Ko, B.J. Yun, K.Y. Kim, S. Kim, Design of a capacitance sensor for void fraction measurement in annular flows through a vertical pipe, Meas. Sci. Technol. 23 (2012) 105301. https://doi.org/10.1088/0957-0233/23/10/105301
  23. Y. Taitel, A.E. Dukler, A model for predicting flow regime transitions in horizontal and near horizontal gas-liquid flow, AICHE J. 22 (1976) 47-55. https://doi.org/10.1002/aic.690220105
  24. H.M. Prasser, A. Bottger, J. Zschau, A new electrode-mesh tomograph for gas-liquid flows, Flow Meas. Instrum. 9 (1998) 111-119. https://doi.org/10.1016/S0955-5986(98)00015-6
  25. J.M. Mandhane, G.A. Gregory, K. Aziz, A flow pattern map for gas-liquid flow in horizontal pipes, Int. J. Multiph. Flow 1 (1974) 537-553. https://doi.org/10.1016/0301-9322(74)90006-8

피인용 문헌

  1. A Capacitance Sensor for Gas/Oil Two-Phase Flow Measurement: Exciting Frequency Analysis and Static Experiment vol.17, pp.3, 2017, https://doi.org/10.1109/jsen.2016.2637399
  2. 다상 유동 Void Fraction 가시화 장치 설계 및 성능 평가 vol.15, pp.1, 2015, https://doi.org/10.5407/jksv.2017.15.1.011
  3. A Dual Conductance Sensor for Simultaneous Measurement of Void Fraction and Structure Velocity of Downward Two-Phase Flow in a Slightly Inclined Pipe vol.17, pp.5, 2015, https://doi.org/10.3390/s17051063
  4. A novel online technique for water conductivity detection of vertical upward oil–gas–water pipe flow using conductance method vol.29, pp.10, 2015, https://doi.org/10.1088/1361-6501/aada33
  5. Measurement of Water Holdup in Oil-in-Water Flows Using Three-Channel Conductance Probe With Center Body vol.18, pp.7, 2015, https://doi.org/10.1109/jsen.2018.2804343
  6. Application of Electromagnetic Induction Technique to Measure the Void Fraction in Oil/Gas Two Phase Flow vol.328, pp.None, 2015, https://doi.org/10.1088/1757-899x/328/1/012030
  7. Development of a rotating electric field conductance sensor for measurement of water holdup in vertical oil–gas–water flows vol.29, pp.7, 2015, https://doi.org/10.1088/1361-6501/aabca1
  8. Void fraction measurement using an imaging and phase isolation method in horizontal annular flow vol.30, pp.2, 2019, https://doi.org/10.1088/1361-6501/aaf8ec
  9. Methodology for production logging in oil-in-water flows under low flow rate and high water-cut conditions vol.16, pp.3, 2015, https://doi.org/10.1007/s11770-019-0780-3
  10. Flow Measurement of Oil-Water Two-Phase Flow at Low Flow Rate Using the Plug-in Conductance Sensor Array vol.19, pp.21, 2015, https://doi.org/10.3390/s19214649
  11. Salinity Independent Flow Measurement of Vertical Upward Gas-Liquid Flows in a Small Pipe Using Conductance Method vol.20, pp.18, 2015, https://doi.org/10.3390/s20185263
  12. Liquid flow measurement using phase isolation and an imaging method in horizontal gas–liquid two-phase flow vol.31, pp.9, 2015, https://doi.org/10.1088/1361-6501/ab83a1
  13. Analysis of Conductance Probes for Two-Phase Flow and Holdup Applications vol.20, pp.24, 2015, https://doi.org/10.3390/s20247042
  14. Flow regime identification of steam-water two-phase flow using optical probes, based on local parameters in vertical tube bundles vol.79, pp.None, 2015, https://doi.org/10.1016/j.flowmeasinst.2021.101928
  15. Modeling and design of a new conductance probe for Gas Void Fraction measurement of two-phase flow through annulus vol.82, pp.None, 2015, https://doi.org/10.1016/j.flowmeasinst.2021.102078