Acknowledgement
Supported by : National Research Foundation of Korea (NRF), Chung-Ang University
References
- A.A. Kendoush, Z.A. Sarkis, Void fraction measurement by Xray absorption, Exp. Therm. Fluid Sci. 25 (2002) 615-621. https://doi.org/10.1016/S0894-1777(01)00117-0
- P. Stahl, P. Rudolf von Rohr, On the accuracy of void fraction measurements by single-beam gamma-densitometry for gas-liquid two-phase flows in pipes, Exp. Therm. Fluid Sci. 28 (2004) 533-544. https://doi.org/10.1016/j.expthermflusci.2003.08.003
- J. Vejrazka, M. Vecer, S. Orvalho, P. Sechet, M.C. Ruzicka, A. Cartellier, Measurement accuracy of a mono-fiber optical probe in a bubbly flow, Int. J. Multiph. Flow 36 (2010) 533-534. https://doi.org/10.1016/j.ijmultiphaseflow.2010.03.007
- S. Paranjape, S.N. Ritchey, S.V. Garimella, Electrical impedance-based void fraction measurement and flow regime identification in microchannel flows under adiabatic conditions, Int. J. Multiph. Flow 42 (2012) 175-183. https://doi.org/10.1016/j.ijmultiphaseflow.2012.02.010
- J.P. Schlegel, S. Miwa, M. Griffiths, T. Hibiki, M. Ishii, Development of impedance void meter for evaluation of flow symmetry, Ann. Nucl. Energy 63 (2014) 525-532. https://doi.org/10.1016/j.anucene.2013.08.026
- Z. Zhang, M. Bieberle, F. Barthel, L. Szalinski, U. Hampel, Investigation of upward cocurrent gas-liquid pipe flow using ultrafast X-ray tomography and wire-mesh sensor, Flow Meas. Instrum. 32 (2013) 111-118. https://doi.org/10.1016/j.flowmeasinst.2013.04.007
-
R.E. Vieira, N.R. Kesana, B.S. McLaury, S.A. Shirazi, C.F. Torres, E. Schleicher, U. Hampel, Experimental investigation of the effect of
$90^{\circ}$ standard elbow on horizontal gas-liquid stratified and annular flow characteristics using dual wire-mesh sensors, Exp. Therm. Fluid Sci. 59 (2014) 72-87. https://doi.org/10.1016/j.expthermflusci.2014.08.001 - D.C. Lowe, K.S. Rezkallah, Flow regime identification in microgravity two-phase flows using void fraction signals, Int. J. Multiph. Flow 17 (1999) 433-457.
- W.H. Ahmed, Capacitance sensors for void-fraction measurements and flow-pattern identification in air-oil twophase flow, IEEE Sensors J. 6 (2006) 1153-1163.
- H. Caniere, C. T'Joen, A. Willockx, M. De Paepe, Capacitance signal analysis of horizontal two-phase flow in a small diameter tube, Exp. Therm. Fluid Sci. 32 (2008) 892-904. https://doi.org/10.1016/j.expthermflusci.2007.10.011
- S. Kim, J.S. Lee, K.Y. Kim, K.H. Kang, B.J. Yun, An approximate formula for the capacitance-void fraction relationship for annular flows, Meas. Sci. Technol. 20 (2009) 125404. https://doi.org/10.1088/0957-0233/20/12/125404
- K. De Kerpel, B. Ameel, S. De Schampheleire, C. T'Joen, H. Caniere, M. De Paepe, Calibration of a capacitive void fraction sensor for small diameter tubes based on capacitive signal features, Appl. Therm. Eng. 63 (2014) 77-83. https://doi.org/10.1016/j.applthermaleng.2013.11.006
- P. Andreussi, A. Di Donfrancesco, M. Messia, An impedance method for the measurement of liquid hold-up in two-phase flow, Int. J. Multiph. Flow 14 (1988) 777-785. https://doi.org/10.1016/0301-9322(88)90074-2
- N.A. Tsochatzidis, D.K. Karapantsios, M.V. Kostoglou, A.J. Karabelas, A conductance probe for measuring liquid fraction in pipes and packed beds, Int. J. Multiph. Flow 18 (1992) 653-667. https://doi.org/10.1016/0301-9322(92)90037-H
- M. Fossa, Design and performance of a conductance probe for measuring the liquid fraction in two-phase gas-liquid flows, Flow Meas. Instrum. 9 (1998) 103-109. https://doi.org/10.1016/S0955-5986(98)00011-9
- J.R. Kim, Y.C. Ahn, M.H. Kim, Measurement of void fraction and bubble speed of slug flow with three-ring conductance probes, Flow Meas. Instrum. 20 (2009) 103-109. https://doi.org/10.1016/j.flowmeasinst.2009.02.001
- J.J.M. Geraets, J.C. Borst, A capacitance sensor for two-phase void fraction measurement and flow pattern identification, Int. J. Multiph. Flow 14 (1988) 305-320. https://doi.org/10.1016/0301-9322(88)90046-8
- J. Ye, L. Peng, W. Wang, W. Zhou, Optimization of helical capacitance sensor for void fraction measurement of gas-liquid two-phase flow in a small diameter tube, IEEE Sensors J. 11 (2011) 2189-2196. https://doi.org/10.1109/JSEN.2011.2116115
- H.C. Yang, D.K. Kim, M.H. Kim, Void fraction measurement using impedance method, Flow Meas. Instrum. 14 (2003) 151-160. https://doi.org/10.1016/S0955-5986(03)00020-7
- S. Huang, X. Zhang, D. Wang, Z. Lin, Equivalent water layer height (EWLH) measurement by a single-wire capacitance probe in gas-liquid flows, Int. J. Multiph. Flow 34 (2008) 809-818. https://doi.org/10.1016/j.ijmultiphaseflow.2008.03.004
- D. Barnea, Transition from annular flow and dispersed bubble flow - unified models for the whole range of pipe inclinations, Int. J. Multiph. Flow 12 (1986) 733-744. https://doi.org/10.1016/0301-9322(86)90048-0
- M.S. Ko, B.J. Yun, K.Y. Kim, S. Kim, Design of a capacitance sensor for void fraction measurement in annular flows through a vertical pipe, Meas. Sci. Technol. 23 (2012) 105301. https://doi.org/10.1088/0957-0233/23/10/105301
- Y. Taitel, A.E. Dukler, A model for predicting flow regime transitions in horizontal and near horizontal gas-liquid flow, AICHE J. 22 (1976) 47-55. https://doi.org/10.1002/aic.690220105
- H.M. Prasser, A. Bottger, J. Zschau, A new electrode-mesh tomograph for gas-liquid flows, Flow Meas. Instrum. 9 (1998) 111-119. https://doi.org/10.1016/S0955-5986(98)00015-6
- J.M. Mandhane, G.A. Gregory, K. Aziz, A flow pattern map for gas-liquid flow in horizontal pipes, Int. J. Multiph. Flow 1 (1974) 537-553. https://doi.org/10.1016/0301-9322(74)90006-8
Cited by
- A Capacitance Sensor for Gas/Oil Two-Phase Flow Measurement: Exciting Frequency Analysis and Static Experiment vol.17, pp.3, 2017, https://doi.org/10.1109/jsen.2016.2637399
- 다상 유동 Void Fraction 가시화 장치 설계 및 성능 평가 vol.15, pp.1, 2015, https://doi.org/10.5407/jksv.2017.15.1.011
- A Dual Conductance Sensor for Simultaneous Measurement of Void Fraction and Structure Velocity of Downward Two-Phase Flow in a Slightly Inclined Pipe vol.17, pp.5, 2015, https://doi.org/10.3390/s17051063
- A novel online technique for water conductivity detection of vertical upward oil–gas–water pipe flow using conductance method vol.29, pp.10, 2015, https://doi.org/10.1088/1361-6501/aada33
- Measurement of Water Holdup in Oil-in-Water Flows Using Three-Channel Conductance Probe With Center Body vol.18, pp.7, 2015, https://doi.org/10.1109/jsen.2018.2804343
- Application of Electromagnetic Induction Technique to Measure the Void Fraction in Oil/Gas Two Phase Flow vol.328, pp.None, 2015, https://doi.org/10.1088/1757-899x/328/1/012030
- Development of a rotating electric field conductance sensor for measurement of water holdup in vertical oil–gas–water flows vol.29, pp.7, 2015, https://doi.org/10.1088/1361-6501/aabca1
- Void fraction measurement using an imaging and phase isolation method in horizontal annular flow vol.30, pp.2, 2019, https://doi.org/10.1088/1361-6501/aaf8ec
- Methodology for production logging in oil-in-water flows under low flow rate and high water-cut conditions vol.16, pp.3, 2015, https://doi.org/10.1007/s11770-019-0780-3
- Flow Measurement of Oil-Water Two-Phase Flow at Low Flow Rate Using the Plug-in Conductance Sensor Array vol.19, pp.21, 2015, https://doi.org/10.3390/s19214649
- Salinity Independent Flow Measurement of Vertical Upward Gas-Liquid Flows in a Small Pipe Using Conductance Method vol.20, pp.18, 2015, https://doi.org/10.3390/s20185263
- Liquid flow measurement using phase isolation and an imaging method in horizontal gas–liquid two-phase flow vol.31, pp.9, 2015, https://doi.org/10.1088/1361-6501/ab83a1
- Analysis of Conductance Probes for Two-Phase Flow and Holdup Applications vol.20, pp.24, 2015, https://doi.org/10.3390/s20247042
- Flow regime identification of steam-water two-phase flow using optical probes, based on local parameters in vertical tube bundles vol.79, pp.None, 2015, https://doi.org/10.1016/j.flowmeasinst.2021.101928
- Modeling and design of a new conductance probe for Gas Void Fraction measurement of two-phase flow through annulus vol.82, pp.None, 2015, https://doi.org/10.1016/j.flowmeasinst.2021.102078