참고문헌
- Ayyangar, R.S., P.P. Nagaeshwara Rao, and K.R. Rao, 1980. Crop cover and crop phenological information from red and infrared spectral responses, J. Indian Soc. Photo-Interpretation Remote Sensing, 8(1): 23-29. https://doi.org/10.1007/BF02990665
- Boschetti, M., D. Stroppiana, S. Bocchi, and P.A. Brivio, 2009. Multi-year monitoring of rice crop phenology through time series analysis of MODIS images, International Journal of Remote Sensing, 30: 4643-4662. https://doi.org/10.1080/01431160802632249
- Boydell, B. and A.B. McBratney, 2002. Identifying potential within-field management zones from cotton-yield estimates, Precis. Agric, 3: 9-23. https://doi.org/10.1023/A:1013318002609
- Casanova, D., G.F. Epema, and J. Goudriaan, 1999. Monitoring rice reflectance at field level for estimating biomass and LAI, Field Crops Research, 55: 83-92.
- Dobermann, A. and M.F. Pampolino, 1995. Indirect leaf area index measurement as a tool for characterizing rice growth at the field scale, Communications on Soil Science and Plant Analysis, 26: 1507-1523. https://doi.org/10.1080/00103629509369387
- Haboudane, D., J.R. Miller, E. Pattey, P.J. Zarco-Tejada, and I. Strachan, 2004. Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: Modeling and validation in the context of precision agriculture, Remote Sens. Environ, 90: 337-352. https://doi.org/10.1016/j.rse.2003.12.013
- Hardke, J.T., 2014. Rice Production Handbook, University of Arkansas Division of agriculture Cooperative Extension Service, USA, MP-192, p. 206.
- Huete, A., K. Didan, T. Miura, E.P. Rodriguez, X. Gao, and L.G. Ferreira, 2002. Overview of the radiometric and biophysical performance of the MODIS vegetation indices, Remote Sens. Environ, 83: 195-213. https://doi.org/10.1016/S0034-4257(02)00096-2
- Kimura, R., S. Okada, H. Miura, and M. Kamichika, 2004. Relationships among the leaf area index, moisture availability, and spectral reflectance in an upland rice field, Agricultural Water Management, 69 (2): 83-100. https://doi.org/10.1016/j.agwat.2004.04.009
- Ko. J., S. Maas, S. Mauget, G. Piccinni, and D. Wanjura, 2006. Modeling water-stressed cotton growth using within-season remote sensing data, Agron. J, 98: 1600-1609. https://doi.org/10.2134/agronj2005.0284
- Maas, S.J., 1992. GRAMI: a crop growth model that can use remotely sensed information. USDA, ARS-91, p. 77.
- Motohka, T., K.N. Nasahara, A. Miyata, M. Mano, and S. Tsuchida, 2009. Evaluation of optical satellite remote sensing for rice paddy phenology in monsoon Asia using a continuous in situ dataset, International Journal of Remote Sensing, 30: 4343-4357.
- Nash, J.E. and J.V. Sutcliffe, 1970. River flow forecasting through conceptual models: Part I. A discussion of principles, J. Hydrol, 10 (3):282-290. https://doi.org/10.1016/0022-1694(70)90255-6
- Pontailler, J.Y., G.J. Hymus, and B.G. Drake, 2003. Estimation of leaf area index using groundbased remote sensed NDVI measurements: validation and comparison with two indirect techniques, Can. J. Remote Sensing, 29 (3):381-387. https://doi.org/10.5589/m03-009
- Rondeaux, G., M. Steven, and F. Baret, 1996. Optimization of soil-adjusted vegetation indices, Remote Sens. Environ, 55: 95-107. https://doi.org/10.1016/0034-4257(95)00186-7
- Rougean, J.-L. and F.M. Breon, 1995. Estimating PAR absorbed by vegetation from bidirectional reflectance measurements, Remote Sens. Environ, 51: 375-384. https://doi.org/10.1016/0034-4257(94)00114-3
- Rouse, J.W., R.H. Haas, J.A. Schell, D.W. Deering, and J.C. Harlan, 1974. Monitoring the vernal advancements and retro gradation of natural vegetation, NASA/GSFC, Greenbelt, MD.
- Sakamoto, T., M. Yokozawa, H. Toritani, M. Shibayama, N. Ishitsuka, and H. Ohno, 2005. A crop phenology detection method using timeseries MODIS data, Remote Sens. Environ, 96: 366-374. https://doi.org/10.1016/j.rse.2005.03.008
- Son, N.T., C.F. Chen, C.R. Chen, H.N. Due, and L.Y. Chang, 2014. A Phenology-Based Classification of Time-Series MODIS Data for Rice Crop Monitoring in Mekong Delta, Vietnam, Remote Sensing, 6(1): 135-156.
- Venkateswarlu, B., P.K. Rao, and A.V. Rao, 1976. Canopy analysis on the relationships between leaf area index and productivity in lowland rice, Oryza sativa, L, Plant and Soil, 45: 49-56. https://doi.org/10.1007/BF00011127
- Vina, A., A.A. Gitelson, D.C. Rundquist, G. Keydan, B. Leavitt, and J. Schepers, 2004. Monitoring Maize (Zea mays L.) Phenology with Remote Sensing, Agron. J, 96: 1139-1147. https://doi.org/10.2134/agronj2004.1139
- Vina, A., A.A. Gitesle, A.L. Nguy-Robertson, and Y. Peng, 2011. Comparison of different vegetation indices for the remote assessment of green leaf area index of crops, Remote Sens. Environ, 115:3468-3478. https://doi.org/10.1016/j.rse.2011.08.010
- Xiao, X., L. He, W. Salas, C. Li, B. Moore, R. Zhao, S. Frolking, and S. Boles, 2002. Quantitative relationships between field-measured leaf area index and vegetation index derived from VEGETATION images for paddy rice fields, International Journal of Remote Sensing, 23:3595-3604. https://doi.org/10.1080/01431160110115799
- Yang, C., J.M. Bradford, and C.L. Wiegand, 2001. Airborne multispectral imagery for mapping variable growing conditions and yields of cotton, grain sorghum, and corn. Trans, ASAE, 44(6): 1983-1994.
- Yang, C.M. and R.K. Chen, 2004. Modeling Rice Growth with Hyperspectral Reflectance Data, Crop Science Society of America, 44: 1283-1290. https://doi.org/10.2135/cropsci2004.1283
-
Yun, S., B. Kang, S. Lim, W. Choi, J. Ko, S. Yoon, H. Ro, and H. Kim, 2011. Further understanding CH4 emissions from a flooded rice field exposed to experimental warming with elevated [
$CO_2$ ], Agric. Forest Meteo, 154-155:75-83. - Zarco-Tejada, P.J., S.L. Ustin, and M.L. Whiting, 2005. Temporal and spatial relationships between within-field yield variability in cotton and highspatial hyperspectral remote sensing imagery, Agron. J, 97: 641-653. https://doi.org/10.2134/agronj2003.0257
- Zhang, X., M.A. Friedl, C.B. Schaaf, A.H. Strahler, J.C.F. Hodges, F. Gao, B.C. Reed, and A. Huete, 2003. Monitoring vegetation phenology using MODIS, Remote Sensing of Environment, 84: 471-475. https://doi.org/10.1016/S0034-4257(02)00135-9
피인용 문헌
- Linking canopy reflectance to crop structure and photosynthesis to capture and interpret spatiotemporal dimensions of per-field photosynthetic productivity vol.14, pp.5, 2015, https://doi.org/10.5194/bg-14-1315-2017
- Performances of Vegetation Indices on Paddy Rice at Elevated Air Temperature, Heat Stress, and Herbicide Damage vol.12, pp.16, 2015, https://doi.org/10.3390/rs12162654