DOI QR코드

DOI QR Code

The Research of the 2-Edge Labeling Methods on Binomial Trees

이항트리에서 2-에지번호매김 방법에 대한 연구

  • 김용석 (서남대학교 컴퓨터정보학과)
  • Received : 2014.10.06
  • Accepted : 2014.12.31
  • Published : 2015.02.28

Abstract

In this paper, we present linear, varied and mixed edge labeling methods using 2-edge labeling on binomial trees. As a result of this paper, we can design the variable topologies to enable optimal broadcasting with binomial tree as spanning tree, if we use these edge labels as the jump sequence of a sort of interconnection networks, circulant graph, with maximum connectivity and high reliability.

본 논문에서는 이항트리의 2-에지번호매김에서 선형적 에지번호매김 방법, 변형된 에지번호매김 방법 그리고 혼합형 에지번호매김 방법들을 제안한다. 이러한 연구결과는 최대 연결도를 갖는 신뢰성이 높은 상호연결망의 일종인 원형군 그래프(circulant graph)의 점프열(jump sequence)로 에지번호들을 사용하면 이항트리를 스패닝 트리로 갖고 최적방송이 가능한 다양한 위상들을 설계할 수 있다.

Keywords

References

  1. D. A. Reed and H. A. Fujimoto, 'Multicomputer Networks: Massage-based Parallel Processing', MIT Press, 1987.
  2. F. T. Leighton, 'Introduction to parallel algorithms and architectures: arrays, trees, hypercubes', Morgan Kaufmann publishers, San Mateo, California, 1992.
  3. S. W. Golomb, 'How to number a graph', Graph Theory and Computing, Academic Press, New York (1972) pp.23-37.
  4. F. R. K. 'Some problems and a graph' Graph Theory and Computing, Academic Press, New York (1972) pp.23-37.
  5. J. A. Bondy and U. S. R. Murty 'Graph theory with applications', North-Holland, New York, 1976.
  6. L. H. Harper, "Optimal numbering and isoperimetric problems on graph," J. Combinatorial Theory (1966) pp.385-393.
  7. J.-H. Park, K.-Y. Chwa, "Recursive circulants and their embeddings among hypercubes," Theorectical Computer Science, pp.35-62. 2000
  8. N. L. Prashanna, K. Sravanthi and N. Sudhakar, "Applications of Graph Labeling in Communication Netwoks," Oriental Journal of Computer Science & Technology, Vol.7, pp.139-145 Apr., 2014.
  9. N. Lakshmiprasanna K. Sravanthi, Nagalla Sudhakar "Applications of Graph Labeling in Major Areas of Computer Science", IJRCCT, Vol.3, pp.819-823, Aug., 2014.
  10. H. -S. Lim, J. -H. Park and K. -Y. Chwa, "Embedding Trees in Recursive Circulants," Discrete Applied Mathematics, Vol.4, No.10, pp.1105-1117, 1993.
  11. J. Choi, Optimal Broadcasting and Complete Ternary Tree Embedding based on Multinomal Trees in Recursive Circulants, Ph. D. Thesis, Dept. of Computer Science, CNU, Kwangju, Korea, 1999.
  12. F, Harray, "The maximum connectivity of a graph," Proc. Nat. Acad. Sci. U.S.A., Vol.48, pp.1142-1146, 1962. https://doi.org/10.1073/pnas.48.7.1142