DOI QR코드

DOI QR Code

Cytotoxic Effects of Tenebrio molitor Larval Extracts against Hepatocellular Carcinoma

갈색거저리 유충 추출물의 간암세포에 대한 세포독성 효능

  • Lee, Ji-Eun (Department of Biological Sciences, Ulsan National Institute of Science and Technology) ;
  • Lee, An-Jung (Department of Biological Sciences, Ulsan National Institute of Science and Technology) ;
  • Jo, Da-Eun (Department of Biological Sciences, Ulsan National Institute of Science and Technology) ;
  • Cho, Ju Hyeong (Department of Biological Sciences, Ulsan National Institute of Science and Technology) ;
  • Youn, Kumju (Department of Food Science and Nutrition, Dong-A University) ;
  • Yun, Eun-Young (Department of Agricultural Biology, National Academy of Agricultural Science, RDA) ;
  • Hwang, Jae-Sam (Department of Agricultural Biology, National Academy of Agricultural Science, RDA) ;
  • Jun, Mira (Department of Food Science and Nutrition, Dong-A University) ;
  • Kang, Byoung Heon (Department of Biological Sciences, Ulsan National Institute of Science and Technology)
  • 이지은 (울산과학기술대학교 생명과학과) ;
  • 이안중 (울산과학기술대학교 생명과학과) ;
  • 조다은 (울산과학기술대학교 생명과학과) ;
  • 조주형 (울산과학기술대학교 생명과학과) ;
  • 윤금주 (동아대학교 식품영양학과) ;
  • 윤은영 (농촌진흥청 곤충산업과) ;
  • 황재삼 (농촌진흥청 곤충산업과) ;
  • 전미라 (동아대학교 식품영양학과) ;
  • 강병헌 (울산과학기술대학교 생명과학과)
  • Received : 2014.10.02
  • Accepted : 2015.01.05
  • Published : 2015.02.28

Abstract

Various natural products or their derivatives, mostly originating from plants, fungi, and bacteria, have been exploited as therapeutic drugs to treat various human diseases. In addition to previously explored organisms, research on natural compounds has now expanded into unexamined living organisms in order to identify novel bioactive substances. Here, we determined whether or not the larval form of the mealworm beetle Tenebrio molitor, a species of darkling beetle, contains cytotoxic substances that exclusively affect cancer cell viability. Ethanol extract and its solvent partitioned fractions, hexane and ethyl acetate fractions, showed anticancer effects against various human cancer cells derived from the prostate (PC3 and 22Rv1), cervix (HeLa), liver (PLC/PRF5, HepG2, Hep3B, and SK-HEP-1), colon (HCT116), lung (NCI-H460), breast (MDA-MB231), and ovary (SKOV3). Cell death induced by the fractions was a mix of apoptosis, necrosis, and autophagy. The hexane fraction was administered intraperitoneally to nude mice bearing a hepatocellular carcinoma SK-HEP-1 and showed inhibition of tumor growth in vivo. Therefore, we concluded that worm extracts contain cytotoxic substances, which can be enriched by proper fractionation protocols, and further separation and purification could lead to the identification of novel molecules to treat human cancers.

본 연구에서 우리는 갈색거저리 유충 추출물의 암세포 선택적인 세포독성 활성을 암세포주를 대상으로 하는 in vitro 및 in vivo 실험으로 증명하였다. 먼저 갈색거저리 유충의 에탄올 추출물은 정상세포라 할 수 있는 primary hepatocyte에 대한 독성은 미미하였으나 암세포주들에 대한 세포독성과 함께 다른 정상세포인 primary cardiomyocyte에 대한 독성도 가지고 있었다. 에탄올 추출물을 hexane, butanol, ethyl acetate, 물을 이용하여 liquid-liquid partition으로 추가로 분획, 구성물질들을 분리하였고 이들 분획물 중에서 hexane 분획물은 다양한 암세포들(PC3, 22Rv1, HeLa, PLC/PRF5, HepG2, Hep3B, SK-HEP-1, HCT116, NCI-H460, MDA-MB231, SKOV3)에 대한 독성을 유지하면서 cardiomyocyte에 대한 독성이 상당히 줄어들었다. 0.4 mg/mL 에탄올 추출물이 cardiomyocyte를 대부분 죽이는 독성을 보였으나 동일조건에서 hexane 분획물은 약 20% 정도의 세포독성만을 보여주어 독성이 상당히 감소된 것을 확인하였다. 이렇게 비특이적인 세포독성이 물질분리 및 분획을 함으로써 줄어들 수 있다는 것을 확인하였다. 두 번째로 hexane과 ethyl acetate 분획물들이 아포토시스, 세포괴사, 오토파지와 같은 대표적인 세포죽음 기전들을 활성화시킬 수 있는 것으로 확인하였다. 더불어 hexane 분획물의 세포죽음 유도활성은 현재 임상에서 널리 처방되고 있는 항암물질들과 함께 간암세포주에 처리되었을 때 항암활성을 증대시킬 수 있는 것으로 확인하였다. 이와 같은 실험 결과를 바탕으로 갈색거저리 유충 추출물들이 단독으로 혹은 다른 세포독성 약물들과 함께 항암활성을 가질 수 있음을 확인하였다. 마지막으로 hexane 분획물의 항암활성을 in vivo xenograft 실험쥐 모델에서 확인하였는데, 간암세포주인 SK-HEP-1을 이식한 실험쥐에서 hexane 분획물을 15일간 복강주사 하였을 때 종양의 성장을 뚜렷하게 억제하는 것을 확인하였고, 앞선 정상세포에 대한 제한적인 영향과 일치하게 몸무게의 감소 등 부작용이라 할 수 있는 증상은 확인되지 않았다. 이상의 결과들을 종합하면 갈색거저리 유충 추출물의 항암활성을 in vitro와 in vivo에서 확인할 수 있었으며, 새로운 항암활성을 가지는 물질 발굴을 위해 추가적인 분획과 물질 분석이 필요하다고 사료된다.

Keywords

References

  1. Lachance H, Wetzel S, Kumar K, Waldmann H. 2012. Charting, navigating, and populating natural product chemical space for drug discovery. J Med Chem 55: 5989-6001. https://doi.org/10.1021/jm300288g
  2. Clardy J, Walsh C. 2004. Lessons from natural molecules. Nature 432: 829-837. https://doi.org/10.1038/nature03194
  3. Newman DJ, Cragg GM. 2012. Natural products as sources of new drugs over the 30 years from 1981 to 2010. J Nat Prod 75: 311-335. https://doi.org/10.1021/np200906s
  4. Bruix J, Sherman M. 2011. Management of hepatocellular carcinoma: an update. Hepatology 53: 1020-1022. https://doi.org/10.1002/hep.24199
  5. Berenbaum MR, Eisner T. 2008. Ecology. Bugs' bugs. Science 322: 52-53. https://doi.org/10.1126/science.1164873
  6. Ratcliffe NA, Mello CB, Garcia ES, Butt TM, Azambuja P. 2011. Insect natural products and processes: new treatments for human disease. Insect Biochem Mol Biol 41: 747-769. https://doi.org/10.1016/j.ibmb.2011.05.007
  7. Dossey AT. 2010. Insects and their chemical weaponry: new potential for drug discovery. Nat Prod Rep 27: 1737-1757. https://doi.org/10.1039/c005319h
  8. Cherniack EP. 2010. Bugs as drugs, Part 1: Insects: the "new" alternative medicine for the 21st century? Altern Med Rev 15: 124-135.
  9. Lord CJ, Ashworth A. 2010. Biology-driven cancer drug development: back to the future. BMC Biol 8: 38. https://doi.org/10.1186/1741-7007-8-38
  10. Kamb A, Wee S, Lengauer C. 2007. Why is cancer drug discovery so difficult? Nat Rev Drug Discov 6: 115-120. https://doi.org/10.1038/nrd2155
  11. Patel MN, Halling-Brown MD, Tym JE, Workman P, Al- Lazikani B. 2013. Objective assessment of cancer genes for drug discovery. Nat Rev Drug Discov 12: 35-50.
  12. Menendez JA, Joven J, Cufi S, Corominas-Faja B, Oliveras- Ferraros C, Cuyas E, Martin-Castillo B, Lopez-Bonet E, Alarcon T, Vazquez-Martin A. 2013. The Warburg effect version 2.0: metabolic reprogramming of cancer stem cells. Cell Cycle 12: 1166-1179. https://doi.org/10.4161/cc.24479
  13. Jain MV, Paczulla AM, Klonisch T, Dimgba FN, Rao SB, Roberg K, Schweizer F, Lengerke C, Davoodpour P, Palicharla VR, Maddika S, Los M. 2013. Interconnections between apoptotic, autophagic and necrotic pathways: implications for cancer therapy development. J Cell Mol Med 17: 12-29. https://doi.org/10.1111/jcmm.12001
  14. Hanahan D, Weinberg RA. 2011. Hallmarks of cancer: the next generation. Cell 144: 646-674. https://doi.org/10.1016/j.cell.2011.02.013
  15. Pemberton RW. 1999. Insects and other arthropods used as drugs in Korean traditional medicine. J Ethnopharmacol 65: 207-216. https://doi.org/10.1016/S0378-8741(98)00209-8
  16. Simon E, Baranyai E, Braun M, Fabian I, Tothmeresz B. 2013. Elemental concentration in mealworm beetle (Tenebrio molitor L.) during metamorphosis. Biol Trace Elem Res 154: 81-87. https://doi.org/10.1007/s12011-013-9700-1
  17. Youn K, Yun EY, Lee J, Kim JY, Hwang JS, Jeong WS, Jun M. 2014. Oleic acid and linoleic acid from Tenebrio molitor larvae inhibit BACE1 activity in vitro: molecular docking studies. J Med Food 17: 284-289. https://doi.org/10.1089/jmf.2013.2968
  18. Han SR, Yun EY, Kim JY, Hwang JS, Jeong EJ, Moon KS. 2014. Evaluation of genotoxicity and 28-day oral dose toxicity on freeze-dried powder of Tenebrio molitor Larvae (yellow mealworm). Toxicol Res 30: 121-130. https://doi.org/10.5487/TR.2014.30.2.121
  19. Moon HJ, Lee SY, Kurata S, Natori S, Lee BL. 1994. Purification and molecular cloning of cDNA for an inducible antibacterial protein from larvae of the coleopteran, Tenebrio molitor. J Biochem 116: 53-58. https://doi.org/10.1093/oxfordjournals.jbchem.a124502
  20. Lee YJ, Chung TJ, Park CW, Hahn Y, Chung JH, Lee BL, Han DM, Jung YH, Kim S, Lee Y. 1996. Structure and expression of the tenecin 3 gene in Tenebrio molitor. Biochem Biophys Res Commun 218: 6-11. https://doi.org/10.1006/bbrc.1996.0002
  21. Youn K, Jun M. 2013. In vitro BACE1 inhibitory activity of geraniin and corilagin from Geranium thunbergii. Planta Med 79: 1038-1042. https://doi.org/10.1055/s-0032-1328769
  22. Li WC, Ralphs KL, Tosh D. 2010. Isolation and culture of adult mouse hepatocytes. Methods Mol Biol 633: 185-196. https://doi.org/10.1007/978-1-59745-019-5_13
  23. Shen L, Hillebrand A, Wang DQ, Liu M. 2012. Isolation and primary culture of rat hepatic cells. J Vis Exp 64: 3917.
  24. Sreejit P, Kumar S, Verma RS. 2008. An improved protocol for primary culture of cardiomyocyte from neonatal mice. In Vitro Cell Dev Biol Anim 44: 45-50. https://doi.org/10.1007/s11626-007-9079-4
  25. Suh HJ, Kang SC. 2012. Antioxidant activity of aqueous methanol extracts of Protaetia brevitarsis Lewis (Coleoptera: Scarabaedia) at different growth stages. Nat Prod Res 26: 510-517. https://doi.org/10.1080/14786419.2010.530267
  26. Vistica DT, Skehan P, Scudiero D, Monks A, Pittman A, Boyd MR. 1991. Tetrazolium-based assays for cellular viability: a critical examination of selected parameters affecting formazan production. Cancer Res 51: 2515-2520.
  27. Galluzzi L, Vitale I, Abrams JM, Alnemri ES, Baehrecke EH, Blagosklonny MV, Dawson TM, Dawson VL, El-Deiry WS, Fulda S, Gottlieb E, Green DR, Hengartner MO, Kepp O, Knight RA, Kumar S, Lipton SA, Lu X, Madeo F, Malorni W, Mehlen P, Nunez G, Peter ME, Piacentini M, Rubinsztein DC, Shi Y, Simon HU, Vandenabeele P, White E, Yuan J, Zhivotovsky B, Melino G, Kroemer G. 2012. Molecular definitions of cell death subroutines: recommendations of the Nomenclature Committee on Cell Death 2012. Cell Death Differ 19: 107-120. https://doi.org/10.1038/cdd.2011.96
  28. Edinger AL, Thompson CB. 2004. Death by design: apoptosis, necrosis and autophagy. Curr Opin Cell Biol 16: 663-669. https://doi.org/10.1016/j.ceb.2004.09.011
  29. Mukhopadhyay P, Rajesh M, Hasko G, Hawkins BJ, Madesh M, Pacher P. 2007. Simultaneous detection of apoptosis and mitochondrial superoxide production in live cells by flow cytometry and confocal microscopy. Nat Protoc 2: 2295- 2301. https://doi.org/10.1038/nprot.2007.327
  30. Koopman G, Reutelingsperger CP, Kuijten GA, Keehnen RM, Pals ST, van Oers MH. 1994. Annexin V for flow cytometric detection of phosphatidylserine expression on B cells undergoing apoptosis. Blood 84: 1415-1420.
  31. Denecker G, Vercammen D, Steemans M, Vanden Berghe T, Brouckaert G, Van Loo G, Zhivotovsky B, Fiers W, Grooten J, Declercq W, Vandenabeele P. 2001. Death receptor- induced apoptotic and necrotic cell death: differential role of caspases and mitochondria. Cell Death Differ 8: 829-840. https://doi.org/10.1038/sj.cdd.4400883
  32. Mizushima N, Yoshimori T. 2007. How to interpret LC3 immunoblotting. Autophagy 3: 542-545. https://doi.org/10.4161/auto.4600
  33. Ravikumar B, Sarkar S, Davies JE, Futter M, Garcia- Arencibia M, Green-Thompson ZW, Jimenez-Sanchez M, Korolchuk VI, Lichtenberg M, Luo S, Massey DC, Menzies FM, Moreau K, Narayanan U, Renna M, Siddiqi FH, Underwood BR, Winslow AR, Rubinsztein DC. 2010. Regulation of mammalian autophagy in physiology and pathophysiology. Physiol Rev 90: 1383-1435. https://doi.org/10.1152/physrev.00030.2009
  34. Kummar S, Chen HX, Wright J, Holbeck S, Millin MD, Tomaszewski J, Zweibel J, Collins J, Doroshow JH. 2010. Utilizing targeted cancer therapeutic agents in combination: novel approaches and urgent requirements. Nat Rev Drug Discov 9: 843-856. https://doi.org/10.1038/nrd3216
  35. Siddik ZH. 2003. Cisplatin: mode of cytotoxic action and molecular basis of resistance. Oncogene 22: 7265-7279. https://doi.org/10.1038/sj.onc.1206933
  36. Minotti G, Menna P, Salvatorelli E, Cairo G, Gianni L. 2004. Anthracyclines: molecular advances and pharmacologic developments in antitumor activity and cardiotoxicity. Pharmacol Rev 56: 185-229. https://doi.org/10.1124/pr.56.2.6
  37. Orr GA, Verdier-Pinard P, McDaid H, Horwitz SB. 2003. Mechanisms of Taxol resistance related to microtubules. Oncogene 22: 7280-7295. https://doi.org/10.1038/sj.onc.1206934
  38. Wilhelm S, Carter C, Lynch M, Lowinger T, Dumas J, Smith RA, Schwartz B, Simantov R, Kelley S. 2006. Discovery and development of sorafenib: a multikinase inhibitor for treating cancer. Nat Rev Drug Discov 5: 835-844. https://doi.org/10.1038/nrd2130

Cited by

  1. Manufacture and Quality Evaluation of Cookies prepared with Mealworm (Tenebrio molitor) Powder vol.29, pp.1, 2016, https://doi.org/10.9799/ksfan.2016.29.1.012
  2. Inhibition of platelet aggregation and thrombosis by indole alkaloids isolated from the edible insect Protaetia brevitarsis seulensis (Kolbe) vol.21, pp.6, 2017, https://doi.org/10.1111/jcmm.13055
  3. Quality Characteristics of Patty Prepared with Mealworm Powder vol.28, pp.5, 2015, https://doi.org/10.9799/ksfan.2015.28.5.813
  4. Change in Dietary Intake and Nutritional Status Using Mealworms as Hospital Meal in Postoperative Patie vol.22, pp.4, 2016, https://doi.org/10.14373/JKDA.2016.22.4.292
  5. 곤충식품 개발 현황 및 전망 vol.49, pp.4, 2016, https://doi.org/10.23093/fsi.2016.49.4.31
  6. 동결건조 갈색거저리 유충의 지방산 조성과 항염증 효과 vol.30, pp.2, 2015, https://doi.org/10.9799/ksfan.2017.30.2.251
  7. Quality Characteristics of White Bread with Hot Air-Dried Tenebrio molitor Larvae Linne Powder vol.33, pp.5, 2015, https://doi.org/10.9724/kfcs.2017.33.5.513
  8. 갈색거저리 유충 추출물의 항산화 활성 및 모발 성장 촉진 효과 vol.27, pp.11, 2015, https://doi.org/10.5352/jls.2017.27.11.1269
  9. 식용곤충식품에 대한 소비자 인식 연구 vol.33, pp.6, 2015, https://doi.org/10.7318/kjfc/2018.33.6.558
  10. Effects of processing methods on nutritional composition and antioxidant activity of mealworm ( TENEBRIO MOLITOR ) larvae vol.49, pp.6, 2015, https://doi.org/10.1111/1748-5967.12363
  11. 흰점박이꽃무지(Protaetia brevitarsis) 추출물의 항혈전 효능 vol.28, pp.7, 2015, https://doi.org/10.5322/jesi.2019.28.7.639
  12. 식용곤충별 단백가수분해물의 항산화 활성 비교 vol.51, pp.5, 2015, https://doi.org/10.9721/kjfst.2019.51.5.480
  13. 사료내 갈색거저리 유산균 발효물 첨가의 돌가자미 치어 성장 효과 vol.22, pp.4, 2015, https://doi.org/10.5762/kais.2021.22.4.312
  14. The impact of polystyrene consumption by edible insects Tenebrio molitor and Zophobas morio on their nutritional value, cytotoxicity, and oxidative stress parameters vol.345, pp.None, 2015, https://doi.org/10.1016/j.foodchem.2020.128846
  15. Antiproliferative effects of mealworm larvae ( Tenebrio molitor ) aqueous extract on human colorectal adenocarcinoma (Caco‐2) and hepatocellular carcinoma (HepG2) cancer cell lines vol.45, pp.7, 2015, https://doi.org/10.1111/jfbc.13778