DOI QR코드

DOI QR Code

박과작물의 유연관계 분석을 통한 수박 EST-SSR 마커의 종간 적용성 검정

Interspecific Transferability of Watermelon EST-SSRs Assessed by Genetic Relationship Analysis of Cucurbitaceous Crops

  • 김혁준 (부산대학교 원예생명과학과) ;
  • 여상석 (부산대학교 원예생명과학과) ;
  • 한동엽 (부산대학교 원예생명과학과) ;
  • 박영훈 (부산대학교 원예생명과학과)
  • Kim, Hyeogjun (Department of Horticultural Bioscience, Pusan National University) ;
  • Yeo, Sang-Seok (Department of Horticultural Bioscience, Pusan National University) ;
  • Han, Dong-Yeop (Department of Horticultural Bioscience, Pusan National University) ;
  • Park, Young-Hoon (Department of Horticultural Bioscience, Pusan National University)
  • 투고 : 2014.07.19
  • 심사 : 2014.10.10
  • 발행 : 2015.02.28

초록

본 연구는 수박의 EST-SSR 마커를 이용하여, 네 개의 주요 박과(Cucurbitaceae) 작물인 수박, 호박, 오이, 멜론의 유연 관계를 분석하고 마커의 타 박과 작물에 활용 가능성을 알아보기 위해 수행되었다. Cucurbit Genomics Initiative(ICuGI) database로부터 선발된 120 EST-SSR 프라이머 중 51(49.17%)가 PCR이 성공하였고, 49(40.8%)가 8개 박과 유전자원에서 다형성을 보였다. 총 24개 박과 유전자원을 24개 EST-SSR 프라이머로 분석한 결과 총 382개 대립유전자 특이적 PCR 밴드를 얻었으며, 이를 토대로 짝유사행렬과 계통도를 작성하였다. 짝유사행렬의 범위는 0.01-0.85였으며, 작성된 계통도에서 24개 유전자원이 두 개의 주요그룹(Clade I, II)으로 분류되었다. Clade I은 다시 수박으로 구성된 하위집단 I-1[I-1a, I-1b-2: 각 1개와 2수박 야생종(Citrullus lanatus var. citroides Mats. & Nakai)으로 구성, I-1b-1: 6개수박 재배종(Citrullus lanatus var. vulgaris Schrad.)로 구성]과 멜론과 오이로 구성된 하위집단I-2[I-2a-1: 4개 멜론 재배종(Cucumis melo var. cantalupensis Naudin.), I-2a-2: 2개 참외 재배종(Cucumis melo var. conomon Makino.), I-2b: 5개 오이 재배종(Cucumis sativus L.)]로 분류되었다. 호박으로 구성된 Clade II는 다시 Cucurbita moschata(Duch. ex Lam.) Duch. & Poir와 Cucurbita maxima Duch.로 구성된 하위집단 II-1과 Cucurbita pepo L.과 Cucurbita ficifolia Bouche로 구성된 하위집단 II-2로 나누어졌다. 이러한 결과는 기존의 종명법에 따른 분류와 일치하며, 따라서 수박 EST-SSR 마커를 이용한 타 박과 작물의 비교 유전체 등 연구분야에 적용 가능성을 확인하였다.

This study was performed to analyze genetic relationships of the four major cucurbitaceous crops including watermelon, melon, cucumber, and squash/pumpkin. Among 120 EST-SSR primer sets selected from the International Cucurbit Genomics Initiative (ICuGI) database, PCR was successful for 51 (49.17%) primer sets and 49 (40.8%) primer sets showed polymorphisms among eight Cucurbitaceae accessions. A total of 382 allele-specific PCR bands were produced by 49 EST-SSR primers from 24 Cucurbitaceae accessions and used for analysis of pairwise similarity and dendrogram construction. Assessment of the genetic relationships resulted in similarity indexes ranging from 0.01 to 0.85. In the dendrogram, 24 Cucurbitaceae accessions were classified into two major groups (Clade I and II) and 8 subgroups. Clade I comprised two subgroups, Clade I-1 for watermelon accessions [I-1a and I-1b-2: three wild-type watermelons (Citrullus lanatus var. citroides Mats. & Nakai), I-1b-1: six watermelon cultivars (Citrullus lanatus var. vulgaris S chrad.)] a nd C lade I -2 for melon and cucumber accessions [I-2a-1 : 4 melon cultivars(Cucumis melo var. cantalupensis Naudin.), I-2a-2: oriental melon cultivars (Cucumis melo var. conomon Makino.), and I-2b: five cucumber cultivars (Cucumis sativus L.)]. Squash and pumpkin accessions composed Clade II {II-1: two squash/ pumpkin cultivars [Cucurbita moschata (Duch. ex Lam.)/Duch. & Poir. and Cucurbita maxima Duch.] and II-2: two squash/pumpkin cultivars, Cucurbita pepo L./Cucurbita ficifolia Bouche.}. These results were in accordance with previously reported classification of Cucurbitaceae species, indicating that watermelon EST-SSRs show a high level of marker transferability and should be useful for genetic study in other cucurbit crops.

키워드

참고문헌

  1. Akashi, Y., N. Fukuda, T. Wako, M. Masuda, and K. Kato. 2002. Genetic variation and phylogenetic relationships in East and South Asian melons, Cucumis melo L., based on the analysis of five isozymes. Euphytica 125:385-396. https://doi.org/10.1023/A:1016086206423
  2. Bisognin, D.A. 2002. Origin and evolution of cultivated cucurbits. Ciencia Rural. 32:715-723. https://doi.org/10.1590/S0103-84782002000400028
  3. Botstein, D., R.L. White, M. Skolnick, and R.W. Davis. 1980. Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am. J. Hum. Genet. 32:314-331.
  4. Choi, Y.M., J.H. Hwang, K.W. Kim, Y.J. Lee, J.S. Lee, Y.H. Choi, B.G. Son, and Y.H. Park. 2012. Appilication of EST-SSR marker for purity test of watermelon $F_1$ cultivars. J. Agr. Life Sci. 46:85-92.
  5. Chung, S., J. Staub, and J. Chen. 2006. Molecular phylogeny of Cucumis species as revealed by consensus chloroplast SSR marker length and sequence variation. Genome 49:219-229. https://doi.org/10.1139/G05-101
  6. D'Agostino, N., M. Aversano, L. Frusciante, and M.L. Chiusano. 2007. TomatEST database: In silico exploitation of EST data to explore expression patterns in tomato species. Nucleic Acids Res. 35:D901-5. https://doi.org/10.1093/nar/gkl921
  7. Dijkhuizen, A., W.C. Kennard, M.J. Havey, and J.E. Staub. 1996. RFLP variation and genetic relationships in cultivated cucumber. Euphytica 90:79-87.
  8. Ellis, J. and J. Burke. 2007. EST-SSRs as a resource for population genetic analyses. Heredity 99:125-132. https://doi.org/10.1038/sj.hdy.6801001
  9. Ferriol, M., B. Pico, and F. Nuez. 2003a. Genetic diversity of a germplasm collection of Cucurbita pepo using SRAP and AFLP markers. Theor. Appl. Genet. 107:271-282. https://doi.org/10.1007/s00122-003-1242-z
  10. Ferriol, M., M.B. Pico, and F. Nuez. 2003b. Genetic diversity of some accessions of Cucurbita maxima from Spain using RAPD and SBAP markers. Genet. Resources Crop Evolution 50:227-238. https://doi.org/10.1023/A:1023502925766
  11. Food and Agriculture Organization of the United Nations (FAO). 2013. Production/Crop. http://faostat3.fao.org/browse/Q/QC/E.
  12. Garcia-Mas, J., M. Oliver, H. Gomez-Paniagua, and M. De Vicente. 2000. Comparing AFLP, RAPD and RFLP markers for measuring genetic diversity in melon. Theor. Appl. Genet. 101:860-864. https://doi.org/10.1007/s001220051553
  13. Gupta, P., S. Rustgi, S. Sharma, R. Singh, N. Kumar, and H. Balyan. 2003. Transferable EST-SSR markers for the study of polymorphism and genetic diversity in bread wheat. Mol. Genet. Genomics 270:315-323. https://doi.org/10.1007/s00438-003-0921-4
  14. Hopkins, D., A. Levi, and M. Pitrat. 2008. Progress in the development of Crimson Sweet-type watermelon breeding lines with resistance to Acidovorax avenae subsp. citrulli. Proc. 9th EUCARPIA Mtg. Genet. Breeding of Cucurbitaceae. INRA, Avignon, 21-24 May, 2008.
  15. Horejsi, T. and J.E. Staub. 1999. Genetic variation in cucumber (Cucumis sativus L.) as assessed by random amplified polymorphic DNA1. Genet. Resouces Crop Evolution 46:337-350. https://doi.org/10.1023/A:1008650509966
  16. Hwang, J.H., S.G. Ahn, J.Y. Oh, Y.W. Choi, J.S. Kang, and Y.H. Park. 2011. Functional characterization of watermelon (Citrullus lanatus L.) EST-SSR by gel electrophoresis and high resolution melting analysis. Sci. Hortic. 130:715-724. https://doi.org/10.1016/j.scienta.2011.08.014
  17. Jeffrey, C. 1980. A review of the Cucurbitaceae. Bot. J. Linnean. Soc. 81:233-247. https://doi.org/10.1111/j.1095-8339.1980.tb01676.x
  18. Katzir, N., Y. Danin-Poleg, G. Tzuri, Z. Karchi, U. Lavi, and P. Cregan. 1996. Length polymorphism and homologies of microsatellites in several Cucurbitaceae species. Theor. Appl. Genet. 93:1282-1290. https://doi.org/10.1007/BF00223461
  19. Knerr, L., J. Staub, D. Holder, and B. May. 1989. Genetic diversity in Cucumis sativus L. assessed by variation at 18 allozyme coding loci. Theor. Appl. Genet. 78:119-128. https://doi.org/10.1007/BF00299764
  20. Kong, Q., C. Xiang, and Z. Yu. 2006. Development of EST‐SSRs in Cucumis sativus from sequence database. Mol. Ecol. Notes 6:1234-1236. https://doi.org/10.1111/j.1471-8286.2006.01500.x
  21. Kong, Q., C. Xiang, Z. Yu, C. Zhang, F. Liu, C. Peng, and X. Peng. 2007. Mining and charactering microsatellites in Cucumis melo expressed sequence tags from sequence database. Mol. Ecol. Notes 7:281-283. https://doi.org/10.1111/j.1471-8286.2006.01580.x
  22. Kwon, Y., Y. Oh, S. Yi, H. Kim, J. An, S. Yang, S. Ok, and J. Shin. 2010. Informative SSR markers for commercial variety discrimination in watermelon (Citrullus lanatus). Genes Genomics 32:115-122. https://doi.org/10.1007/s13258-008-0674-x
  23. Lee, S.W. and Z.H. Kim. 2003. Genetic relationship analysis of melons (Cucumis melo) germplasm by RAPD method. J. Kor. Soc. Hort. Sci. 44:307-313.
  24. Levi, A., C.E. Thomas, A.P. Keinath, and T.C. Wehner. 2001. Genetic diversity among watermelon (Citrullus lanatus and Citrullus colocynthis) accessions. Genet. Resource Crop Evolution 48:559-566. https://doi.org/10.1023/A:1013888418442
  25. Levi, A., P. Wechter, and A. Davis. 2009. EST-PCR markers representing watermelon fruit genes are polymorphic among watermelon heirloom cultivars sharing a narrow genetic base. Plant Genet. Resources 7:16-32.
  26. Li, D., H.E. Cuevas, L. Yang, Y. Li, J. Garcia-Mas, J. Zalapa, J.E. Staub, F. Luan, U. Reddy, X. He, Z. Gong, and Y. Weng. 2011. Syntenic relationships between cucumber (Cucumis sativus L.) and melon (C. melo L.) chromosomes as revealed by comparative genetic mapping. BMC Genomics 12:396-409. https://doi.org/10.1186/1471-2164-12-396
  27. Nei, M. and W.H. Li. 1979. Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc. Natl. Acad. Sci. U.S.A. 76:5269-5273. https://doi.org/10.1073/pnas.76.10.5269
  28. Nunome, T., S. Negoro, I. Kono, H. Kanamori, K. Miyatake, H. Yamaguchi, A. Ohyama, and H. Fukuoka. 2009. Development of SSR markers derived from SSR-enriched genomic library of eggplant (Solanum melongena L.). Theor. Appl. Genet. 119:1143-1153. https://doi.org/10.1007/s00122-009-1116-0
  29. Park, Y.H., S.G. Ahn, Y.M. Choi, H.J. Oh, D.C. Ahn, J.G. Kim, J.S. Kang, Y.W. Choi, and B.R. Jeong. 2010. Rose (Rosa hybrida L.) EST-derived microsatellite markers and their transferability to strawberry (Fragaria spp.). Sci. Hortic. 125:733-739. https://doi.org/10.1016/j.scienta.2010.05.012
  30. Ritschel, P.S., T.C. Lins, R.L. Tristan, G.S. Buso, J.A. Buso, and M.E. Ferreira. 2004. Development of microsatellite markers from an enriched genomic library for genetic analysis of melon (Cucumis melo L.). BMC Plant Biol. 4:9-22. https://doi.org/10.1186/1471-2229-4-9
  31. Rohlf, F. 2002. NTSYS-pc: Numerical taxonomy system, version 2.1. Exeter Publishing. Ltd., Setauket, New York, USA.
  32. Schaefer, H., C. Heibl, and S.S. Renner. 2009. Gourds afloat: A dated phylogeny reveals an Asian origin of the gourd family (Cucurbitaceae) and numerous oversea dispersal events. Proc. Biol. Sci. 276:843-851. https://doi.org/10.1098/rspb.2008.1447
  33. Yi, G., J. M. Lee, S. Lee, D. Choi, and B. Kim. 2006. Exploitation of pepper EST-SSRs and an SSR-based linkage map. Theor. Appl. Genet. 114:113-130. https://doi.org/10.1007/s00122-006-0415-y
  34. Zhuang, F., J. Chen, J. Staub, and C. Qian. 2004. Assessment of genetic relationships among Cucumis spp. by SSR and RAPD marker analysis. Plant Breeding 123:167-172. https://doi.org/10.1046/j.1439-0523.2003.00889.x

피인용 문헌

  1. 갓 (Brassica juncea) 품종구분을 위한 ITS 영역 및 MITE Family 정보를 이용한 분자표지 개발 vol.34, pp.2, 2015, https://doi.org/10.12972/kjhst.20160031