DOI QR코드

DOI QR Code

Spinosin, a C-Glucosylflavone, from Zizyphus jujuba var. spinosa Ameliorates Aβ1-42 Oligomer-Induced Memory Impairment in Mice

  • Ko, Sang Yoon (Department of Life and Nanopharmaceutical Science, College of Pharmacy, Kyung Hee University) ;
  • Lee, Hyung Eun (Department of Life and Nanopharmaceutical Science, College of Pharmacy, Kyung Hee University) ;
  • Park, Se Jin (Department of Life and Nanopharmaceutical Science, College of Pharmacy, Kyung Hee University) ;
  • Jeon, Se Jin (Department of Life and Nanopharmaceutical Science, College of Pharmacy, Kyung Hee University) ;
  • Kim, Boseong (Department of Life and Nanopharmaceutical Science, College of Pharmacy, Kyung Hee University) ;
  • Gao, Qingtao (Department of Life and Nanopharmaceutical Science, College of Pharmacy, Kyung Hee University) ;
  • Jang, Dae Sik (Department of Life and Nanopharmaceutical Science, College of Pharmacy, Kyung Hee University) ;
  • Ryu, Jong Hoon (Department of Life and Nanopharmaceutical Science, College of Pharmacy, Kyung Hee University)
  • Received : 2014.09.30
  • Accepted : 2015.01.22
  • Published : 2015.03.01

Abstract

Alzheimer's disease (AD) is a neurodegenerative disorder associated with progressive memory loss and neuronal cell death. Although numerous previous studies have been focused on disease progression or reverse pathological symptoms, therapeutic strategies for AD are limited. Alternatively, the identification of traditional herbal medicines or their active compounds has received much attention. The aims of the present study were to characterize the ameliorating effects of spinosin, a C-glucosylflavone isolated from Zizyphus jujuba var. spinosa, on memory impairment or the pathological changes induced through amyloid-${\beta}_{1-42}$ oligomer ($A{\beta}O$) in mice. Memory impairment was induced by intracerebroventricular injection of $A{\beta}O$ ($50{\mu}M$) and spinosin (5, 10, and 20 mg/kg) was administered for 7 days. In the behavioral tasks, the subchronic administration of spinosin (20 mg/kg, p.o.) significantly ameliorated $A{\beta}O$-induced cognitive impairment in the passive avoidance task or the Y-maze task. To identify the effects of spinosin on the pathological changes induced through $A{\beta}O$, immunohistochemistry and Western blot analyses were performed. Spinosin treatment also reduced the number of activated microglia and astrocytes observed after $A{\beta}O$ injection. In addition, spinosin rescued the $A{\beta}O$-induced decrease in choline acetyltransferase expression levels. These results suggest that spinosin ameliorated memory impairment induced through $A{\beta}O$, and these effects were regulated, in part, through neuroprotective activity via the anti-inflammatory effects of spinosin. Therefore, spinosin might be a useful agent against the amyloid ${\beta}$ protein-induced cognitive dysfunction observed in AD patients.

Keywords

References

  1. Armstrong, D. M., Bruce, G., Hersh, L. B. and Terry, R. D. (1986)Choline acetyltransferase immunoreactivity in neuritic plaques of Alzheimer brain. Neurosci. Lett. 71, 229-234. https://doi.org/10.1016/0304-3940(86)90564-1
  2. Block, M. L., Zecca, L. and Hong, J. S. (2007) Microglia-mediated neurotoxicity: uncovering the molecular mechanisms. Nat. Rev. Neurosci. 8, 57-69. https://doi.org/10.1038/nrn2038
  3. Bloom, G. S., Ren, K. and Glabe, C. G. (2005) Cultured cell and transgenic mouse models for tau pathology linked to beta-amyloid. Biochim. Biophys. Acta 1739, 116-124. https://doi.org/10.1016/j.bbadis.2004.08.008
  4. Chen, C. Y., Chen, Y. F. and Tsai, H. Y. (2008) What is the effective component in suanzaoren decoction for curing insomnia? Discovery by virtual screening and molecular dynamic simulation. J. Biomol. Struct Dyn. 26, 57-64. https://doi.org/10.1080/07391102.2008.10507223
  5. Chiang, K. and Koo, E. H. (2014) Emerging therapeutics for Alzheimer's disease. Annu. Rev. Pharmacol. Toxicol. 54, 381-405. https://doi.org/10.1146/annurev-pharmtox-011613-135932
  6. Choi, D. Y., Lee, J. W., Peng, J., Lee, Y. J., Han, J. Y., Lee, Y. H., Choi, I. S., Han, S. B., Jung, J. K., Lee, W. S., Lee, S. H., Kwon, B. M., Oh, K. W. and Hong, J. T. (2012) Obovatol improves cognitive functions in animal models for Alzheimer's disease. J. Neurochem. 120, 1048-1059.
  7. Coyle, J. T., Price, D. L. and DeLong, M. R. (1983) Alzheimer's disease: a disorder of cortical cholinergic innervation. Science 219, 1184-1190. https://doi.org/10.1126/science.6338589
  8. Cummings, J. L. (2004) Treatment of Alzheimer's disease: current and future therapeutic approaches. Rev. Neurol. Dis. 1, 60-69.
  9. Dahlgren, K. N., Manelli, A. M., Stine, W. B., Jr., Baker, L. K., Krafft, G. A. and LaDu, M. J. (2002) Oligomeric and fibrillar species of amyloid-beta peptides differentially affect neuronal viability. J. Biol. Chem. 277, 32046-32053. https://doi.org/10.1074/jbc.M201750200
  10. Dinamarca, M. C., Cerpa, W., Garrido, J., Hancke, J. L. and Inestrosa, N. C. (2006) Hyperforin prevents beta-amyloid neurotoxicity and spatial memory impairments by disaggregation of Alzheimer's amyloid- beta-deposits. Mol. Psychiatry 11, 1032-1048. https://doi.org/10.1038/sj.mp.4001866
  11. Francis, P. T., Palmer, A. M., Snape, M. and Wilcock, G. K. (1999) The cholinergic hypothesis of Alzheimer's disease: a review of progress. J. Neurol. Neurosurg. Psychiatry 66, 137-147. https://doi.org/10.1136/jnnp.66.2.137
  12. Glabe, C. C. (2005) Amyloid accumulation and pathogensis of Alzheimer's disease: significance of monomeric, oligomeric and fibrillar Abeta. Subcell. Biochem. 38, 167-177. https://doi.org/10.1007/0-387-23226-5_8
  13. Han, H., Ma, Y., Eun, J. S., Li, R., Hong, J. T., Lee, M. K. and Oh, K. W. (2009) Anxiolytic-like effects of sanjoinine A isolated from Zizyphi Spinosi Semen: possible involvement of GABAergic transmission. Pharmacol. Biochem. Behav. 92, 206-213. https://doi.org/10.1016/j.pbb.2008.11.012
  14. Hardy, J. and Allsop, D. (1991) Amyloid deposition as the central event in the aetiology of Alzheimer's disease. Trends Pharmacol. Sci. 12, 383-388. https://doi.org/10.1016/0165-6147(91)90609-V
  15. Hardy, J. and Selkoe, D. J. (2002) The amyloid hypothesis of Alzheimer's disease: progress and problems on the road to therapeutics. Science 297, 353-356. https://doi.org/10.1126/science.1072994
  16. Hendrie, H. C. (1997) Epidemiology of Alzheimer's disease. Geriatrics 52 Suppl 2, S4-8.
  17. Hyman, B. T., Van Hoesen, G. W., Damasio, A. R. and Barnes, C. L. (1984) Alzheimer's disease: cell-specific pathology isolates the hippocampal formation. Science 225, 1168-1170. https://doi.org/10.1126/science.6474172
  18. Jung, I. H., Lee, H. E., Park, S. J., Ahn, Y. J., Kwon, G., Woo, H., Lee, S. Y., Kim, J. S., Jo, Y. W., Jang, D. S., Kang, S. S. and Ryu, J. H. (2014) Ameliorating effect of spinosin, a C-glycoside flavonoid, on scopolamine-induced memory impairment in mice. Pharmacol. Biochem. Behav. 120, 88-94. https://doi.org/10.1016/j.pbb.2014.02.015
  19. Kim, D. H., Kim, S., Jeon, S. J., Son, K. H., Lee, S., Yoon, B. H., Cheong, J. H., Ko, K. H. and Ryu, J. H. (2008) The effects of acute and repeated oroxylin A treatments on Abeta(25-35)-induced memory impairment in mice. Neuropharmacology 55, 639-647. https://doi.org/10.1016/j.neuropharm.2008.05.019
  20. Koo, E. H., Lansbury, P. T., Jr. and Kelly, J. W. (1999) Amyloid diseases: abnormal protein aggregation in neurodegeneration. Proc. Natl. Acad Sci. U.S.A. 96, 9989-9990. https://doi.org/10.1073/pnas.96.18.9989
  21. Lee, H. E., Kim, D. H., Park, S. J., Kim, J. M., Lee, Y. W., Jung, J. M., Lee, C. H., Hong, J. G., Liu, X., Cai, M., Park, K. J., Jang, D. S. and Ryu, J. H. (2012) Neuroprotective effect of sinapic acid in a mouse model of amyloid beta(1-42) protein-induced Alzheimer's disease. Pharmacol. Biochem. Behav. 103, 260-266. https://doi.org/10.1016/j.pbb.2012.08.015
  22. Lee, H. E., Lee, S. Y., Kim, J. S., Park, S. J., Kim, J. M., Lee, Y. W., Jung, J. M., Kim, D. H., Shin, B. Y., Jang, D. S., Kang, S. S. and Ryu, J. H. (2013) Ethanolic extract of the seed of Zizyphus jujuba var. spinosa ameliorates cognitive impairment induced by cholinergic blockade in mice. Biomol. Ther. 21, 299-306. https://doi.org/10.4062/biomolther.2013.043
  23. Lublin, A. L. and Link, C. D. (2013) Alzheimer's disease drug discovery: in vivo screening using Caenorhabditis elegans as a model for beta-amyloid peptide-induced toxicity. Drug Discov. Today Technol. 10, e115-119. https://doi.org/10.1016/j.ddtec.2012.02.002
  24. Lue, L. F., Kuo, Y. M., Roher, A. E., Brachova, L., Shen, Y., Sue, L., Beach, T., Kurth, J. H., Rydel, R. E. and Rogers, J. (1999) Soluble amyloid beta peptide concentration as a predictor of synaptic change in Alzheimer's disease. Am. J. Pathol. 155, 853-862. https://doi.org/10.1016/S0002-9440(10)65184-X
  25. McLean, C. A., Cherny, R. A., Fraser, F. W., Fuller, S. J., Smith, M. J., Beyreuther, K., Bush, A. I. and Masters, C. L. (1999) Soluble pool of Abeta amyloid as a determinant of severity of neurodegeneration in Alzheimer's disease. Ann. Neurol. 46, 860-866. https://doi.org/10.1002/1531-8249(199912)46:6<860::AID-ANA8>3.0.CO;2-M
  26. Mizuno, T. (2012) The biphasic role of microglia in Alzheimer's disease. Int. J. Alzheimers. Dis. 2012, 737846.
  27. Moon, M., Choi, J. G., Kim, S. Y. and Oh, M. S. (2014) Bombycis excrementum reduces amyloid-beta oligomer-induced memory impairments, neurodegeneration, and neuroinflammation in mice. J. Alzheimers Dis. 41, 599-613.
  28. Moon, M., Choi, J. G., Nam, D. W., Hong, H. S., Choi, Y. J., Oh, M. S. and Mook-Jung, I. (2011) Ghrelin ameliorates cognitive dysfunction and neurodegeneration in intrahippocampal amyloid-beta1-42 oligomer-injected mice. J. Alzheimers Dis. 23, 147-159.
  29. Morales, I., Guzman-Martinez, L., Cerda-Troncoso, C., Farias, G. A. and Maccioni, R. B. (2014) Neuroinflammation in the pathogenesis of Alzheimer's disease. A rational framework for the search of novel therapeutic approaches. Front Cell. Neurosci. 8, 112.
  30. Nagele, R. G., Wegiel, J., Venkataraman, V., Imaki, H. and Wang, K. C. (2004) Contribution of glial cells to the development of amyloid plaques in Alzheimer's disease. Neurobiol. Aging 25, 663-674. https://doi.org/10.1016/j.neurobiolaging.2004.01.007
  31. Nunes-Tavares, N., Santos, L. E., Stutz, B., Brito-Moreira, J., Klein, W. L., Ferreira, S. T. and de Mello, F. G. (2012) Inhibition of choline acetyltransferase as a mechanism for cholinergic dysfunction induced by amyloid-beta peptide oligomers. J. Biol. Chem. 287, 19377-19385. https://doi.org/10.1074/jbc.M111.321448
  32. Paxinos, G. and Franklin, K. B. (2001) The Mouse Brain in Stereotaxic Coordinates. Elsevier Academic Press, San Diego.
  33. Resende, R., Pereira, C., Agostinho, P., Vieira, A. P., Malva, J. O. and Oliveira, C. R. (2007) Susceptibility of hippocampal neurons to Abeta peptide toxicity is associated with perturbation of Ca2+ homeostasis. Brain Res. 1143, 11-21. https://doi.org/10.1016/j.brainres.2007.01.071
  34. Strauss, W. L., Kemper, R. R., Jayakar, P., Kong, C. F., Hersh, L. B., Hilt, D. C. and Rabin, M. (1991) Human choline acetyltransferase gene maps to region 10q11-q22.2 by in situ hybridization. Genomics 9, 396-398. https://doi.org/10.1016/0888-7543(91)90273-H
  35. Tomic, J. L., Pensalfini, A., Head, E. and Glabe, C. G. (2009) Soluble fibrillar oligomer levels are elevated in Alzheimer's disease brain and correlate with cognitive dysfunction. Neurobiol. Dis. 35, 352-358. https://doi.org/10.1016/j.nbd.2009.05.024
  36. Wang, L. E., Cui, X. Y., Cui, S. Y., Cao, J. X., Zhang, J., Zhang, Y. H., Zhang, Q. Y., Bai, Y. J. and Zhao, Y. Y. (2010) Potentiating effect of spinosin, a C-glycoside flavonoid of Semen Ziziphi spinosae, on pentobarbital-induced sleep may be related to postsynaptic 5-HT(1A) receptors. Phytomedicine 17, 404-409. https://doi.org/10.1016/j.phymed.2010.01.014
  37. Wang, L. E., Zhang, X. Q., Yin, Y. Q. and Zhang, Y. H. (2012) Augmentative effect of spinosin on pentobarbital-induced loss of righting reflex in mice associated with presynaptic 5-HT1A receptor. J. Pharm. Pharmacol. 64, 277-282. https://doi.org/10.1111/j.2042-7158.2011.01400.x
  38. Xu, P. X., Wang, S. W., Yu, X. L., Su, Y. J., Wang, T., Zhou, W. W., Zhang, H., Wang, Y. J. and Liu, R. T. (2014) Rutin improves spatial memory in Alzheimer's disease transgenic mice by reducing Abeta oligomer level and attenuating oxidative stress and neuroinflammation. Behav. Brain Res. 264, 173-180. https://doi.org/10.1016/j.bbr.2014.02.002
  39. Yang, F., Lim, G. P., Begum, A. N., Ubeda, O. J., Simmons, M. R., Ambegaokar, S. S., Chen, P. P., Kayed, R., Glabe, C. G., Frautschy, S. A. and Cole, G. M. (2005) Curcumin inhibits formation of amyloid beta oligomers and fibrils, binds plaques, and reduces amyloid in vivo. J. Biol. Chem. 280, 5892-5901. https://doi.org/10.1074/jbc.M404751200
  40. Yoon, S. S. and Jo, S. A. (2012) Mechanisms of amyloid-beta peptide clearance: potential therapeutic targets for Alzheimer's disease. Biomol. Ther. 20, 245-255. https://doi.org/10.4062/biomolther.2012.20.3.245
  41. Zhang, M., Ning, G., Shou, C., Lu, Y., Hong, D. and Zheng, X. (2003) Inhibitory effect of jujuboside A on glutamate-mediated excitatory signal pathway in hippocampus. Planta Med. 69, 692-695. https://doi.org/10.1055/s-2003-42786
  42. Zhu, Y. (1998) Chinese Materia Medica: Chemistry, Pharmacology and Applications. pp.513-515. Harwood Academic Publishers, The Netherlands.

Cited by

  1. Cassia obtusifolia seed ameliorates amyloid β-induced synaptic dysfunction through anti-inflammatory and Akt/GSK-3β pathways vol.178, 2016, https://doi.org/10.1016/j.jep.2015.12.007
  2. Spinosin, a C-glycoside flavonoid, enhances cognitive performance and adult hippocampal neurogenesis in mice vol.145, 2016, https://doi.org/10.1016/j.pbb.2016.03.007
  3. Ethanol extract of the seed of Zizyphus jujuba var. spinosa potentiates hippocampal synaptic transmission through mitogen-activated protein kinase, adenylyl cyclase, and protein kinase A pathways vol.200, 2017, https://doi.org/10.1016/j.jep.2017.02.009
  4. White Ginseng Protects Mouse Hippocampal Cells Against Amyloid-Beta Oligomer Toxicity vol.31, pp.3, 2017, https://doi.org/10.1002/ptr.5776
  5. The pharmacokinetics and tissue distribution of coumaroylspinosin in rat: A novel flavone C-glycoside derived from Zizyphi Spinosi Semen vol.1046, 2017, https://doi.org/10.1016/j.jchromb.2017.01.030
  6. Herbal medicine for psychiatric disorders: Psychopharmacology and neuroscience-based nomenclature 2017, https://doi.org/10.1080/15622975.2017.1346279
  7. Ziziphus spina-christi leaf extract pretreatment inhibits liver and spleen injury in a mouse model of sepsis via anti-oxidant and anti-inflammatory effects vol.26, pp.3, 2018, https://doi.org/10.1007/s10787-017-0439-8
  8. 7-Deoxy-trans-dihydronarciclasine Reduces β-Amyloid and Ameliorates Memory Impairment in a Transgenic Model of Alzheimer’s Disease pp.1559-1182, 2018, https://doi.org/10.1007/s12035-018-1023-y
  9. Safety Evaluation of a New Traditional Chinese Medical Formula, Ciji-Hua’ai-Baosheng II Formula, in Adult Rodent Models vol.2019, pp.1741-4288, 2019, https://doi.org/10.1155/2019/3659890
  10. The Seed of Zizyphus jujuba var. spinosa Attenuates Alzheimer’s Disease-Associated Hippocampal Synaptic Deficits through BDNF/TrkB Signaling vol.40, pp.12, 2015, https://doi.org/10.1248/bpb.b17-00378
  11. Traditional Oriental Medicines and Alzheimer’s Disease vol.10, pp.4, 2015, https://doi.org/10.14336/ad.2018.0328
  12. Neuroprotective Effects of Spinosin on Recovery of Learning and Memory in a Mouse Model of Alzheimer's Disease vol.27, pp.1, 2015, https://doi.org/10.4062/biomolther.2018.051
  13. Box-Behnken Experimental Design for Extraction of Spinosin from Ziziphus mauritiana Lam. Seeds vol.31, pp.5, 2015, https://doi.org/10.14233/ajchem.2019.21763
  14. Spinosin Attenuates Alzheimer's Disease-Associated Synaptic Dysfunction via Regulation of Plasmin Activity vol.28, pp.2, 2020, https://doi.org/10.4062/biomolther.2019.076
  15. Spinosin Inhibits Aβ1-42 Production and Aggregation via Activating Nrf2/HO-1 Pathway vol.28, pp.3, 2015, https://doi.org/10.4062/biomolther.2019.123
  16. Identification of polyphenol from Ziziphi spinosae semen against human colon cancer cells and colitis-associated colorectal cancer in mice vol.11, pp.9, 2015, https://doi.org/10.1039/d0fo01375g
  17. Identification of the absorptive constituents and their metabolites in vivo of Ziziphi Spinosae Semen by UPLC–ESI–Q‐TOF–MS/MS vol.34, pp.12, 2015, https://doi.org/10.1002/bmc.4965
  18. Effects of the fermented Zizyphus jujuba in the amyloid β25-35-induced Alzheimer's disease mouse model vol.15, pp.2, 2021, https://doi.org/10.4162/nrp.2021.15.2.173
  19. Kihito prevents corticosterone-induced brain dysfunctions in mice vol.11, pp.6, 2015, https://doi.org/10.1016/j.jtcme.2021.05.002
  20. Metagenomic and phytochemical analyses of kefir water and its subchronic toxicity study in BALB/c mice vol.21, pp.1, 2015, https://doi.org/10.1186/s12906-021-03358-3