DOI QR코드

DOI QR Code

Inhibitory Effects of Yuzu and Its Components on Human Platelet Aggregation

  • Kim, Tae-Ho (College of Pharmacy, Ajou University) ;
  • Kim, Hye-Min (College of Pharmacy, Ajou University) ;
  • Park, Se Won (Department of Molecular Biotechnology, College of Life and Environmental Sciences, Konkuk University) ;
  • Jung, Yi-Sook (College of Pharmacy, Ajou University)
  • Received : 2015.01.16
  • Accepted : 2015.02.09
  • Published : 2015.03.01

Abstract

Our previous study demonstrated that yuzu has an anti-platelet effect in rat blood. In the present study, we examined whether the anti-platelet effect of yuzu can be extended to human blood by investigating its ability to inhibit aggregations induced by various agonists in human platelet rich plasma (PRP). This study also investigated the underlying mechanism of yuzu focusing on ADP granule secretion, $TXB_2$ formations, and $PLC{\gamma}$/Akt signaling. The results from this study showed that ethanolic yuzu extract (YE), and its components, hesperidin and naringin, inhibited human platelet aggregation in a concentration-dependent manner. YE, hesperidin and naringin also inhibited $TXB_2$ formation and ADP release. The phosphorylation of $PLC{\gamma}$ and Akt was significantly inhibited by YE, heperidin and naringin. Furthermore, we demonstrated that YE, heperidin and naringin has anti-platelet effects in rat ex vivo studies, and lower side effects in mice tail bleeding time studies. The results from this study suggest that YE, hesperidin and naringin can inhibit human platelet aggregation, at least partly through the inhibition of $PLC{\gamma}$ and Akt, leading to a decrease in $TXB_2$ formation and granule secretion.

Keywords

References

  1. Barrett, N. E., Holbrook, L., Jones, S., Kaiser, W. J., Moraes, L. A., Rana, R., Sage, T., Stanley, R. G., Tucker, K. L., Wright, B. and Gibbins, J. M. (2008) Future innovations in anti-platelet therapies. Br. J. Pharmacol. 154, 918-939. https://doi.org/10.1038/bjp.2008.151
  2. Bassand, J. P. (2013) Current antithrombotic agents for acute coronary syndromes: focus on bleeding risk. Int. J. Cardiol. 163, 5-18. https://doi.org/10.1016/j.ijcard.2011.10.104
  3. Cho, H.-J., Choi, S.-A., Kim, C.-G., Jung, T.-S., Hong, J.-H., Rhee, M.-H., Park, H.-J. and Park, H.-J. (2011) Spinach saponin-enriched fraction inhibits platelet aggregation in cAMP- and cGMP-dependent manner by decreasing TXA2 production and blood coagulation. Biomol. Ther. 19, 218-223. https://doi.org/10.4062/biomolther.2011.19.2.218
  4. Cho, J., Furie, B. C., Coughlin, S. R. and Furie, B. (2008) A critical role for extracellular protein disulfide isomerase during thrombus formation in mice. J. Clin. Invest. 118, 1123-1131.
  5. Endale, M., Lee, W. M., Kamruzzaman, S. M., Kim, S. D., Park, J. Y., Park, M. H., Park, T. Y., Park, H. J., Cho, J. Y. and Rhee, M. H. (2012) Ginsenoside-Rp1 inhibits platelet activation and thrombus formation via impaired glycoprotein VI signalling pathway, tyrosine phosphorylation and MAPK activation. Br. J. Pharmacol. 167, 109-127. https://doi.org/10.1111/j.1476-5381.2012.01967.x
  6. Eskandariyan, Z., Esfahani Zadeh, M., Haj Mohammad Ebrahim Tehrani, K., Mashayekhi, V. and Kobarfard, F. (2014) Synthesis of thioether derivatives of quinazoline-4-one-2-thione and evaluation of their antiplatelet aggregation activity. Arch. Pharm. Res. 37, 332-339. https://doi.org/10.1007/s12272-013-0192-5
  7. Flevaris, P., Li, Z., Zhang, G., Zheng, Y., Liu, J. and Du, X. (2009) Two distinct roles of mitogen-activated protein kinases in platelets and a novel Rac1-MAPK-dependent integrin outside-in retractile signaling pathway. Blood 113, 893-901. https://doi.org/10.1182/blood-2008-05-155978
  8. Jung, Y. S., Kim, M. H., Lee, S. H., Baik, E. J., Park, S. W. and Moon, C. H. (2002) Antithrombotic effect of onion in streptozotocin-induced diabetic rat. Prostaglandins Leukot. Essent. Fatty Acids 66, 453-458. https://doi.org/10.1054/plef.2002.0373
  9. Kim, H., Oh, S. J., Liu, Y. and Lee, M. Y. (2011) A comparative study of the anti-platelet effects of cis- and trans-resveratrol. Biomol. Ther. 19, 201-205. https://doi.org/10.4062/biomolther.2011.19.2.201
  10. Lee, D. S., Kim, T. H. and Jung, Y. S. (2014a) Inhibitory effect of allyl isothiocyanate on platelet aggregation. J. Agric. Food Chem. 62, 7131-7139. https://doi.org/10.1021/jf4041518
  11. Lee, W., Ku, S. K. and Bae, J. S. (2014b) Antiplatelet, anticoagulant, and profibrinolytic activities of baicalin. Arch. Pharm. Res. [Epub ahead of print]
  12. Liou, J. T., Mao, C. C., Liu, F. C., Lin, H. T., Hung, L. M., Liao, C. H. and Day, Y. J. (2012) Levobupivacaine differentially suppresses platelet aggregation by modulating calcium release in a dose-dependent manner. Acta Anaesthesiol. Taiwan 50, 112-121. https://doi.org/10.1016/j.aat.2012.07.001
  13. Pyo, M. K., Lee, Y. and Yun-Choi, H. S. (2002) Anti-platelet effect of the constituents isolated from the barks and fruits of Magnolia obovata. Arch. Pharm. Res. 25, 325-328. https://doi.org/10.1007/BF02976634
  14. Ruggeri, Z. M. (2002) Platelets in atherothrombosis. Nat. Med. 8, 1227-1234. https://doi.org/10.1038/nm1102-1227
  15. Seo, E. J., Lee, D. U., Kwak, J. H., Lee, S. M., Kim, Y. S. and Jung, Y. S. (2011) Antiplatelet effects of Cyperus rotundus and its component (+)-nootkatone. J. Ethnopharmacol. 135, 48-54. https://doi.org/10.1016/j.jep.2011.02.025
  16. Vaiyapuri, S., Ali, M. S., Moraes, L. A., Sage, T., Lewis, K. R., Jones, C. I. and Gibbins, J. M. (2013) Tangeretin regulates platelet function through inhibition of phosphoinositide 3-kinase and cyclic nucleotide signaling. Arterioscler. Thromb. Vasc. Biol. 33, 2740-2749. https://doi.org/10.1161/ATVBAHA.113.301988
  17. Xia, Q., Wang, X., Xu, D. J., Chen, X. H. and Chen, F. H. (2012) Inhibition of platelet aggregation by curdione from Curcuma wenyujin essential Oil. Thromb. Res. 130, 409-414. https://doi.org/10.1016/j.thromres.2012.04.005
  18. Yang, H. J., Hwang, J. T., Kwon, D. Y., Kim, M. J., Kang, S., Moon, N. R. and Park, S. (2013) Yuzu extract prevents cognitive decline and impaired glucose homeostasis in beta-amyloid-infused rats. J. Nutr. 143, 1093-1099. https://doi.org/10.3945/jn.112.173401
  19. Yu, H. Y., Park, S. W., Chung, I. M. and Jung, Y. S. (2011) Anti-platelet effects of yuzu extract and its component. Food Chem. Toxicol. 49, 3018-3024. https://doi.org/10.1016/j.fct.2011.09.038

Cited by

  1. Effects of yuja peel extract and its flavanones on osteopenia in ovariectomized rats and osteoblast differentiation vol.60, pp.12, 2016, https://doi.org/10.1002/mnfr.201600257
  2. Study of Pharmacodynamic and Pharmacokinetic Interaction of Bojungikki-Tang with Aspirin in Healthy Subjects and Ischemic Stroke Patients vol.2018, pp.None, 2015, https://doi.org/10.1155/2018/9727240
  3. Predictive value of platelet aggregation rate in postpartum deep venous thrombosis and its possible mechanism vol.15, pp.6, 2018, https://doi.org/10.3892/etm.2018.6116
  4. The inhibitory effect of tachyplesin I on thrombosis and its mechanisms vol.94, pp.3, 2015, https://doi.org/10.1111/cbdd.13570
  5. Bioactive ingredients in Korean cosmeceuticals: Trends and research evidence vol.19, pp.7, 2020, https://doi.org/10.1111/jocd.13344
  6. Yuzu and Hesperidin Ameliorate Blood-Brain Barrier Disruption during Hypoxia via Antioxidant Activity vol.9, pp.9, 2015, https://doi.org/10.3390/antiox9090843
  7. In Vitro and In Vivo Inhibitory Effect of Citrus Junos Tanaka Peel Extract against Oxidative Stress-Induced Apoptotic Death of Lung Cells vol.9, pp.12, 2015, https://doi.org/10.3390/antiox9121231