References
-
Andúar, I., Rís, J. L., Giner, R. M. and Recio, M. C. (2013) Shikonin promotes intestinal wound healing in vitro via induction of TGF-
$\beta$ release in IEC-18 cells. Eur. J. Pharm. Sci. 49, 637-641. https://doi.org/10.1016/j.ejps.2013.05.018 - Block, M. L. and Hong, J. S. (2005) Microglia and inflammation-mediated neurodegeneration: multiple triggers with a common mechanism. Prog. Neurobiol. 76, 77-98. https://doi.org/10.1016/j.pneurobio.2005.06.004
- Block, M. L., Zecca, L. and Hong, J. S. (2007) Microglia-mediated neurotoxicity: uncovering the molecular mechanism. Nat. Rev. Neurosci. 8, 57-69. https://doi.org/10.1038/nrn2038
-
Bonizzi, G., Piette, J., Schoonbroodt, S., Greimers, R., Havard, L., Merville, M. P. and Bours, V. (1999) Reactive oxygen intermediatedependent NF-
${\kappa}B$ activation by interleukin-1$\beta$ requires 5-lipoxygenase or NADPH oxidase activity. Mol. Cell. Biol. 19, 1950-1960. https://doi.org/10.1128/MCB.19.3.1950 -
Camandola, S. and Mattson, M. P. (2007) NF-
${\kappa}B$ as a therapeutic target in neurodegenerative disease. Expert Opin. Ther. Targets 11, 123-132. https://doi.org/10.1517/14728222.11.2.123 - Cho, Y. H., Lee, C. H. and Kim, S. G. (2003) Potentiation of lipopolysaccharide- inducible cyclooxygenase 2 expression by C2-ceramide via c-Jun N-terminal kinase-mediated activation of CCAAT/enhancer binding protein beta in macrophages. Mol. Pharmacol. 63, 512-523. https://doi.org/10.1124/mol.63.3.512
- Cimino, P. J., Keene, C. D., Breyer, R. M., Montine, K. S. and Montine, T. J. (2008) Therapeutic targets in prostaglandin E2 signaling for neurologic disease. Curr. Med. Chem. 15, 1863-1869. https://doi.org/10.2174/092986708785132915
- Doherty, G. H. (2011) Nitric oxide in neurodegeneration: potential benefits of non-steroidal anti-inflammatories. Neurosci. Bull. 27, 366-382. https://doi.org/10.1007/s12264-011-1530-6
- Duffield, J. S. (2003) The inflammatory macrophage: a story of Jekyll and Hyde. Clin. Sci. 104, 27-38. https://doi.org/10.1042/cs1040027
- Gonźlez-scarano, F. and Baltuch, G. (1999) Microglia as mediators of inflammatory degenerative diseases. Annu. Rev. Neurosci. 22, 219-240. https://doi.org/10.1146/annurev.neuro.22.1.219
- Hoherl, K., Dreher, F., Kurtz, A. and Bucher, M. (2002) Cyclooxygenase- 2 inhibition attenuates lipopolysaccharide-induced cardiovascular failure. Hypertention 40, 947-953. https://doi.org/10.1161/01.HYP.0000041221.13644.B9
- Huang, W. R., Zhanz, Y. and Tang, X. (2014) Shikonin inhibits the proliferation of human lens epithelial cells by inducing apoptosis through ROS and caspase-dependent pathway. Molecules 19, 7785-7797. https://doi.org/10.3390/molecules19067785
- Kawanishi, N., Kato, K., Takahashi, M., Mizokami, T., Otsuka, Y., Imaizumi, A., Shiva, D., Yano, H. and Ssuzuki, K. (2013) Curcumin attenuates oxidative stress following downhill running-induced muscle damage. Biochem. Biophys. Res. Commun. 441, 573-578. https://doi.org/10.1016/j.bbrc.2013.10.119
-
Kempe, S., Kestler, H., Lasar, A. and Wirth, T. (2005) NF-
${\kappa}B$ controls the global pro-inflammatory response in endothelial cells: evidence for the regulation of a pro-atherogenic program. Nucleic Acids Res. 33, 5308-5319. https://doi.org/10.1093/nar/gki836 -
Kim, S. U., Park, Y. H., Min, J. S., Sun, H. N., Han, Y. H., Hua, J. M., Lee, T. H., Lee, S. R., Chang, K. T., Kang, S. W., Kim, J. M., Yu, D. Y., Lee, S. H. and Lee, D. S. (2013) Peroxiredoxin I is a ROS/p38 MAPK-dependent inducible antioxidant that regulates NF-
${\kappa}B$ -mediated iNOS induction and microglial activation. J. Neuroimmunol. 259, 26-36. https://doi.org/10.1016/j.jneuroim.2013.03.006 -
Korn, S. H., Wouters, E. F., Vos, N. and Janssen-Heininger, Y. M. (2001) Cytokine-induced activation of nuclear factor-kappa B is inhibited by hydrogen peroxide through oxidative inactivation of I
${\kappa}B$ kinase. J. Biol. Chem. 276, 35693-35700. https://doi.org/10.1074/jbc.M104321200 -
Lee, A. K., Sung, S. H., Kim, Y. C. and Kim, S. G. (2003) Inhibition of lipopolysaccharide-inducible nitric oxide synthase, TNF-
$\alpha$ and COX-2 expression by sauchinone effects on I${\kappa}B$ $\alpha$ phosphorylation, C/EBP and AP-1 activation. Br. J. Pharmacol. 139, 11-20. https://doi.org/10.1038/sj.bjp.0705231 - Lee, C. C., Wang, C. N., Lai, Y. T., Kang, J. J., Liao, J. W., Chiang, B. L., Chen, H. C. and Cheng, Y. W. (2010) Shikonin inhibits maturation of bone marrow-derived dendritic cells and suppresses allergic airway inflammation in a murine model of asthma. Br. J. Pharmacol. 161, 1496-1511. https://doi.org/10.1111/j.1476-5381.2010.00972.x
-
Li, T., Yan, F., Wang, R., Zhou, H. and Liu, L. (2013) Shikonin suppresses human T lymphocyte activation through inhibition of IKK
$\beta$ activity and JNK phosphorylation. Evid. Based Complement. Alternat. Med. 2013, 379536. - Liang, D., Sun, Y., Shen, Y., Li, F., Song, X., Zhou, E., Zhao, F., Liu, Z., Fu, Y., Guo, M., Zhang, N., Yang, Z. and Cao, Y. (2013) Shikonin exerts anti-inflammatory effects in a murine model of lipopolysaccharide-induced acute lung injury by inhibiting the nuclear factorkappaB signaling pathway. Int. Immunopharmacol. 16, 475-480. https://doi.org/10.1016/j.intimp.2013.04.020
- Lipsky, P. E. (1999) The clinical potential of cyclooxygenase-2-specific inhibitor. Am. J. Med. 106, 51S-57S. https://doi.org/10.1016/S0002-9343(99)00117-5
- Macmicking, J., Xie, Q. W. and Nathan, C. (1997) Nitric oxide and macrophage function. Annu. Rev. Immunol. 15, 323-350. https://doi.org/10.1146/annurev.immunol.15.1.323
-
Maqbool, A., Lattke, M., Wirth, T. and Baumann, B. (2013) Sustained, neuron-specific IKK/NF-
${\kappa}B$ activation generates a selective neuroinflammatory response promoting local neurodegeneration with aging. Mol. Neurodegener. 8, 40. https://doi.org/10.1186/1750-1326-8-40 - Murakami, A. and Ohigashi, H. (2007) Targeting NOX, INOS and COX- 2 in inflammatory cells: chemoprevention using food phytochemicals. Int. J. Cancer 121, 2357-2363. https://doi.org/10.1002/ijc.23161
- Nathan, C. and Xie, Q. W. (1994) Nitric oxide synthases: roles, tolls, and controls. Cell 78, 915-918. https://doi.org/10.1016/0092-8674(94)90266-6
- Qin L. and Crews, F. T. (2012) NADPH oxidase and reactive oxygen species contribute to alcohol-induced microglial activation and neurodegeneration. J. Neuroinflammation 9, 5. https://doi.org/10.1186/1742-2094-9-5
-
Silva, L. C., Ortigosa, L. C. and Benard, G. (2010) Anti-TNF-
$\alpha$ agents in the treatment of immune-mediated inflammatory diseases: mechanisms of action and pitfalls. Immunotherapy 2, 817-833. https://doi.org/10.2217/imt.10.67 -
Siomek, A. (2012) NF-
${\kappa}B$ signaling pathway and free radical impact. Acta Biochim. Pol. 59, 323-331. -
Surh, Y. J., Chun, K. S., Cha, H. H., Han, S. S., Keum, Y. S., Park, K. K. and Lee, S. S. (2001) Molecular mechanisms underlying chemopreventive activities of anti-inflammatory phytochemicals: downregulations of COX-2 and iNOS through suppression of NF-
${\kappa}B$ activation. Mutat. Res. 480-481, 243-268. https://doi.org/10.1016/S0027-5107(01)00183-X - Tracey, K. J. and Cerami, A. (1994) Tumor necrosis factor: a pleiotropic cytokine and therapeutic target. Annu. Rev. Med. 45, 491-503. https://doi.org/10.1146/annurev.med.45.1.491
-
Wang, L., Li, Z., Zhang, X., Wang, S., Zhu, C., Miao, J., Chen, L., Cui, L. and Qiao, H. (2014) Protective effect of shikonin in experimental ischemic stroke: attenuated TLR4, p-p38MAPK, NF-
${\kappa}B$ , TNF-$\alpha$ and MMP-9 expression, up-regulated claudin-5 expression, ameliorated BBB permeability. Neurochem. Res. 39, 97-106. https://doi.org/10.1007/s11064-013-1194-x - Wu, H., Xie, J., Pan, Q., Wang, B., Hu, D. and Hu, X. (2013) Anticancer agent shikonin is an incomplete inducer of cancer drug resistance. PLoS One 8, e52706. https://doi.org/10.1371/journal.pone.0052706
- Xuan, Y. and Hu, X. (2009) Naturally-occurring shikonin analogues-a class of necroptotic inducers that circumvent cancer drug resistance. Cancer Lett. 274, 233-242. https://doi.org/10.1016/j.canlet.2008.09.029
- Yang, J. T., Li, Z. L., Wu, J. Y., Lu, F. J. and Chen, C. H. (2014a) An oxidative stress mechanism of shikonin in human glioma cells. PLoS One 9, e94180. https://doi.org/10.1371/journal.pone.0094180
-
Yang, Y., Wang, J., Yang, Q., Wu, S., Yang, Z., Zhu, H., Zheng, M., Liu, W., Wu, W., He, J. and Chen, Z. (2014b) Shikonin inhibits the lipopolysaccharide-induced release of HMGB1 in RAW264.7 cells via IFN and NF-
${\kappa}B$ signaling pathways. Int. Immunopharmacol. 19, 81-87. https://doi.org/10.1016/j.intimp.2014.01.003 - Zhang, F. L., Wang, P., Liu, Y. H., Liu, L. B., Liu, X. B., Li, Z. and Xue, Y. X. (2013) Topoisomerase I inhibitors, shikonin and topotecan, inhibit growth and induce apoptosis of glioma cells and glioma stem cells. PLoS One 8, e81815. https://doi.org/10.1371/journal.pone.0081815
- Zhao, B. (2005) Nitric oxide in neurodegenerative diseases. Front. Biosci. 10, 454-461. https://doi.org/10.2741/1541
- Zikaki, K., Aggeli, I. K., Gaitanaki, C. and Beis, I. (2014) Curcumin induces the apoptotic intrinsic pathway via upregulation of reactive oxygen species and JNKs in H9c2 cardiac myoblasts. Apoptosis 19, 958-974. https://doi.org/10.1007/s10495-014-0979-y
Cited by
- Shikonin inhibits inflammation and chondrocyte apoptosis by regulation of the PI3K/Akt signaling pathway in a rat model of osteoarthritis vol.12, pp.4, 2016, https://doi.org/10.3892/etm.2016.3642
- Vaccinium bracteatumThunb. Exerts Anti-Inflammatory Activity by Inhibiting NF-κB Activation in BV-2 Microglial Cells vol.24, pp.5, 2016, https://doi.org/10.4062/biomolther.2015.205
- Shikonin inhibits myeloid differentiation protein 2 to prevent LPS-induced acute lung injury vol.175, pp.5, 2018, https://doi.org/10.1111/bph.14129
- The Anti-neuroinflammatory Activity of Tectorigenin Pretreatment via Downregulated NF-κB and ERK/JNK Pathways in BV-2 Microglial and Microglia Inactivation in Mice With Lipopolysaccharide vol.9, pp.1663-9812, 2018, https://doi.org/10.3389/fphar.2018.00462