DOI QR코드

DOI QR Code

Shikonin Isolated from Lithospermum erythrorhizon Downregulates Proinflammatory Mediators in Lipopolysaccharide-Stimulated BV2 Microglial Cells by Suppressing Crosstalk between Reactive Oxygen Species and NF-κB

  • Received : 2015.01.09
  • Accepted : 2015.02.05
  • Published : 2015.03.01

Abstract

According to the expansion of lifespan, neuronal disorder based on inflammation has been social problem. Therefore, we isolated shikonin from Lithospermum erythrorhizon and evaluated anti-inflammatory effects of shikonin in lipopolysaccharide (LSP)-stimulated BV2 microglial cells. Shikonin dose-dependently inhibits the expression of the proinflammatory mediators, nitric oxide (NO), prostaglandin $E_2$ ($PGE_2$), and tumor necrosis factor-${\kappa}B$ (TNF-${\alpha}$) as well as their main regulatory genes and products such as inducible NO synthase (iNOS), cyclooxygenase-2 (COX-2), and TNF-${\alpha}$ in LPS-stimulated BV2 microglial cells. Additionally, shikonin suppressed the LPS-induced DNA-binding activity of nuclear factor-${\kappa}B$ (NF-${\kappa}B$) to regulate the key regulatory genes of the proinflammatory mediators, such as iNOS, COX-2, and TNF-${\alpha}$, accompanied with downregulation of reactive oxygen species (ROS) generation. The results indicate that shikonin may downregulate the expression of proinflammatory genes involved in the synthesis of NO, $PGE_2$, and TNF-${\alpha}$ in LPS-treated BV2 microglial cells by suppressing ROS and NF-${\kappa}B$. Taken together, our results revealed that shikonin exerts downregulation of proinflammatory mediators by interference the ROS and NF-${\kappa}B$ signaling pathway.

Keywords

References

  1. Andúar, I., Rís, J. L., Giner, R. M. and Recio, M. C. (2013) Shikonin promotes intestinal wound healing in vitro via induction of TGF-$\beta$ release in IEC-18 cells. Eur. J. Pharm. Sci. 49, 637-641. https://doi.org/10.1016/j.ejps.2013.05.018
  2. Block, M. L. and Hong, J. S. (2005) Microglia and inflammation-mediated neurodegeneration: multiple triggers with a common mechanism. Prog. Neurobiol. 76, 77-98. https://doi.org/10.1016/j.pneurobio.2005.06.004
  3. Block, M. L., Zecca, L. and Hong, J. S. (2007) Microglia-mediated neurotoxicity: uncovering the molecular mechanism. Nat. Rev. Neurosci. 8, 57-69. https://doi.org/10.1038/nrn2038
  4. Bonizzi, G., Piette, J., Schoonbroodt, S., Greimers, R., Havard, L., Merville, M. P. and Bours, V. (1999) Reactive oxygen intermediatedependent NF-${\kappa}B$ activation by interleukin-1$\beta$ requires 5-lipoxygenase or NADPH oxidase activity. Mol. Cell. Biol. 19, 1950-1960. https://doi.org/10.1128/MCB.19.3.1950
  5. Camandola, S. and Mattson, M. P. (2007) NF-${\kappa}B$ as a therapeutic target in neurodegenerative disease. Expert Opin. Ther. Targets 11, 123-132. https://doi.org/10.1517/14728222.11.2.123
  6. Cho, Y. H., Lee, C. H. and Kim, S. G. (2003) Potentiation of lipopolysaccharide- inducible cyclooxygenase 2 expression by C2-ceramide via c-Jun N-terminal kinase-mediated activation of CCAAT/enhancer binding protein beta in macrophages. Mol. Pharmacol. 63, 512-523. https://doi.org/10.1124/mol.63.3.512
  7. Cimino, P. J., Keene, C. D., Breyer, R. M., Montine, K. S. and Montine, T. J. (2008) Therapeutic targets in prostaglandin E2 signaling for neurologic disease. Curr. Med. Chem. 15, 1863-1869. https://doi.org/10.2174/092986708785132915
  8. Doherty, G. H. (2011) Nitric oxide in neurodegeneration: potential benefits of non-steroidal anti-inflammatories. Neurosci. Bull. 27, 366-382. https://doi.org/10.1007/s12264-011-1530-6
  9. Duffield, J. S. (2003) The inflammatory macrophage: a story of Jekyll and Hyde. Clin. Sci. 104, 27-38. https://doi.org/10.1042/cs1040027
  10. Gonźlez-scarano, F. and Baltuch, G. (1999) Microglia as mediators of inflammatory degenerative diseases. Annu. Rev. Neurosci. 22, 219-240. https://doi.org/10.1146/annurev.neuro.22.1.219
  11. Hoherl, K., Dreher, F., Kurtz, A. and Bucher, M. (2002) Cyclooxygenase- 2 inhibition attenuates lipopolysaccharide-induced cardiovascular failure. Hypertention 40, 947-953. https://doi.org/10.1161/01.HYP.0000041221.13644.B9
  12. Huang, W. R., Zhanz, Y. and Tang, X. (2014) Shikonin inhibits the proliferation of human lens epithelial cells by inducing apoptosis through ROS and caspase-dependent pathway. Molecules 19, 7785-7797. https://doi.org/10.3390/molecules19067785
  13. Kawanishi, N., Kato, K., Takahashi, M., Mizokami, T., Otsuka, Y., Imaizumi, A., Shiva, D., Yano, H. and Ssuzuki, K. (2013) Curcumin attenuates oxidative stress following downhill running-induced muscle damage. Biochem. Biophys. Res. Commun. 441, 573-578. https://doi.org/10.1016/j.bbrc.2013.10.119
  14. Kempe, S., Kestler, H., Lasar, A. and Wirth, T. (2005) NF-${\kappa}B$ controls the global pro-inflammatory response in endothelial cells: evidence for the regulation of a pro-atherogenic program. Nucleic Acids Res. 33, 5308-5319. https://doi.org/10.1093/nar/gki836
  15. Kim, S. U., Park, Y. H., Min, J. S., Sun, H. N., Han, Y. H., Hua, J. M., Lee, T. H., Lee, S. R., Chang, K. T., Kang, S. W., Kim, J. M., Yu, D. Y., Lee, S. H. and Lee, D. S. (2013) Peroxiredoxin I is a ROS/p38 MAPK-dependent inducible antioxidant that regulates NF-${\kappa}B$-mediated iNOS induction and microglial activation. J. Neuroimmunol. 259, 26-36. https://doi.org/10.1016/j.jneuroim.2013.03.006
  16. Korn, S. H., Wouters, E. F., Vos, N. and Janssen-Heininger, Y. M. (2001) Cytokine-induced activation of nuclear factor-kappa B is inhibited by hydrogen peroxide through oxidative inactivation of I${\kappa}B$ kinase. J. Biol. Chem. 276, 35693-35700. https://doi.org/10.1074/jbc.M104321200
  17. Lee, A. K., Sung, S. H., Kim, Y. C. and Kim, S. G. (2003) Inhibition of lipopolysaccharide-inducible nitric oxide synthase, TNF-$\alpha$ and COX-2 expression by sauchinone effects on I${\kappa}B$$\alpha$ phosphorylation, C/EBP and AP-1 activation. Br. J. Pharmacol. 139, 11-20. https://doi.org/10.1038/sj.bjp.0705231
  18. Lee, C. C., Wang, C. N., Lai, Y. T., Kang, J. J., Liao, J. W., Chiang, B. L., Chen, H. C. and Cheng, Y. W. (2010) Shikonin inhibits maturation of bone marrow-derived dendritic cells and suppresses allergic airway inflammation in a murine model of asthma. Br. J. Pharmacol. 161, 1496-1511. https://doi.org/10.1111/j.1476-5381.2010.00972.x
  19. Li, T., Yan, F., Wang, R., Zhou, H. and Liu, L. (2013) Shikonin suppresses human T lymphocyte activation through inhibition of IKK$\beta$ activity and JNK phosphorylation. Evid. Based Complement. Alternat. Med. 2013, 379536.
  20. Liang, D., Sun, Y., Shen, Y., Li, F., Song, X., Zhou, E., Zhao, F., Liu, Z., Fu, Y., Guo, M., Zhang, N., Yang, Z. and Cao, Y. (2013) Shikonin exerts anti-inflammatory effects in a murine model of lipopolysaccharide-induced acute lung injury by inhibiting the nuclear factorkappaB signaling pathway. Int. Immunopharmacol. 16, 475-480. https://doi.org/10.1016/j.intimp.2013.04.020
  21. Lipsky, P. E. (1999) The clinical potential of cyclooxygenase-2-specific inhibitor. Am. J. Med. 106, 51S-57S. https://doi.org/10.1016/S0002-9343(99)00117-5
  22. Macmicking, J., Xie, Q. W. and Nathan, C. (1997) Nitric oxide and macrophage function. Annu. Rev. Immunol. 15, 323-350. https://doi.org/10.1146/annurev.immunol.15.1.323
  23. Maqbool, A., Lattke, M., Wirth, T. and Baumann, B. (2013) Sustained, neuron-specific IKK/NF-${\kappa}B$ activation generates a selective neuroinflammatory response promoting local neurodegeneration with aging. Mol. Neurodegener. 8, 40. https://doi.org/10.1186/1750-1326-8-40
  24. Murakami, A. and Ohigashi, H. (2007) Targeting NOX, INOS and COX- 2 in inflammatory cells: chemoprevention using food phytochemicals. Int. J. Cancer 121, 2357-2363. https://doi.org/10.1002/ijc.23161
  25. Nathan, C. and Xie, Q. W. (1994) Nitric oxide synthases: roles, tolls, and controls. Cell 78, 915-918. https://doi.org/10.1016/0092-8674(94)90266-6
  26. Qin L. and Crews, F. T. (2012) NADPH oxidase and reactive oxygen species contribute to alcohol-induced microglial activation and neurodegeneration. J. Neuroinflammation 9, 5. https://doi.org/10.1186/1742-2094-9-5
  27. Silva, L. C., Ortigosa, L. C. and Benard, G. (2010) Anti-TNF-$\alpha$ agents in the treatment of immune-mediated inflammatory diseases: mechanisms of action and pitfalls. Immunotherapy 2, 817-833. https://doi.org/10.2217/imt.10.67
  28. Siomek, A. (2012) NF-${\kappa}B$ signaling pathway and free radical impact. Acta Biochim. Pol. 59, 323-331.
  29. Surh, Y. J., Chun, K. S., Cha, H. H., Han, S. S., Keum, Y. S., Park, K. K. and Lee, S. S. (2001) Molecular mechanisms underlying chemopreventive activities of anti-inflammatory phytochemicals: downregulations of COX-2 and iNOS through suppression of NF-${\kappa}B$ activation. Mutat. Res. 480-481, 243-268. https://doi.org/10.1016/S0027-5107(01)00183-X
  30. Tracey, K. J. and Cerami, A. (1994) Tumor necrosis factor: a pleiotropic cytokine and therapeutic target. Annu. Rev. Med. 45, 491-503. https://doi.org/10.1146/annurev.med.45.1.491
  31. Wang, L., Li, Z., Zhang, X., Wang, S., Zhu, C., Miao, J., Chen, L., Cui, L. and Qiao, H. (2014) Protective effect of shikonin in experimental ischemic stroke: attenuated TLR4, p-p38MAPK, NF-${\kappa}B$, TNF-$\alpha$ and MMP-9 expression, up-regulated claudin-5 expression, ameliorated BBB permeability. Neurochem. Res. 39, 97-106. https://doi.org/10.1007/s11064-013-1194-x
  32. Wu, H., Xie, J., Pan, Q., Wang, B., Hu, D. and Hu, X. (2013) Anticancer agent shikonin is an incomplete inducer of cancer drug resistance. PLoS One 8, e52706. https://doi.org/10.1371/journal.pone.0052706
  33. Xuan, Y. and Hu, X. (2009) Naturally-occurring shikonin analogues-a class of necroptotic inducers that circumvent cancer drug resistance. Cancer Lett. 274, 233-242. https://doi.org/10.1016/j.canlet.2008.09.029
  34. Yang, J. T., Li, Z. L., Wu, J. Y., Lu, F. J. and Chen, C. H. (2014a) An oxidative stress mechanism of shikonin in human glioma cells. PLoS One 9, e94180. https://doi.org/10.1371/journal.pone.0094180
  35. Yang, Y., Wang, J., Yang, Q., Wu, S., Yang, Z., Zhu, H., Zheng, M., Liu, W., Wu, W., He, J. and Chen, Z. (2014b) Shikonin inhibits the lipopolysaccharide-induced release of HMGB1 in RAW264.7 cells via IFN and NF-${\kappa}B$ signaling pathways. Int. Immunopharmacol. 19, 81-87. https://doi.org/10.1016/j.intimp.2014.01.003
  36. Zhang, F. L., Wang, P., Liu, Y. H., Liu, L. B., Liu, X. B., Li, Z. and Xue, Y. X. (2013) Topoisomerase I inhibitors, shikonin and topotecan, inhibit growth and induce apoptosis of glioma cells and glioma stem cells. PLoS One 8, e81815. https://doi.org/10.1371/journal.pone.0081815
  37. Zhao, B. (2005) Nitric oxide in neurodegenerative diseases. Front. Biosci. 10, 454-461. https://doi.org/10.2741/1541
  38. Zikaki, K., Aggeli, I. K., Gaitanaki, C. and Beis, I. (2014) Curcumin induces the apoptotic intrinsic pathway via upregulation of reactive oxygen species and JNKs in H9c2 cardiac myoblasts. Apoptosis 19, 958-974. https://doi.org/10.1007/s10495-014-0979-y

Cited by

  1. Shikonin inhibits inflammation and chondrocyte apoptosis by regulation of the PI3K/Akt signaling pathway in a rat model of osteoarthritis vol.12, pp.4, 2016, https://doi.org/10.3892/etm.2016.3642
  2. Vaccinium bracteatumThunb. Exerts Anti-Inflammatory Activity by Inhibiting NF-κB Activation in BV-2 Microglial Cells vol.24, pp.5, 2016, https://doi.org/10.4062/biomolther.2015.205
  3. Shikonin inhibits myeloid differentiation protein 2 to prevent LPS-induced acute lung injury vol.175, pp.5, 2018, https://doi.org/10.1111/bph.14129
  4. The Anti-neuroinflammatory Activity of Tectorigenin Pretreatment via Downregulated NF-κB and ERK/JNK Pathways in BV-2 Microglial and Microglia Inactivation in Mice With Lipopolysaccharide vol.9, pp.1663-9812, 2018, https://doi.org/10.3389/fphar.2018.00462