References
- Arduino, L. J. and Mellinger, G. T. (1967) Clinical trial of busulfan (NSC-750) in advanced carcinoma of prostate. Cancer Chemother. Rep. 51, 295-303.
- Armour, A. A. and Watkins, C. L. (2010) The challenge of targeting EGFR: experience with gefitinib in nonsmall cell lung cancer. Eur. Respir. Rev. 19, 186-196. https://doi.org/10.1183/09059180.00005110
- Ben Sahra, I., Laurent, K., Loubat, A., Giorgetti-Peraldi, S., Colosetti, P., Auberger, P., Tanti, J. F., Le Marchand-Brustel, Y. and Bost, F. (2008) The antidiabetic drug metformin exerts an antitumoral effect in vitro and in vivo through a decrease of cyclin D1 level. Oncogene 27, 3576-3586. https://doi.org/10.1038/sj.onc.1211024
- Bernards, R. (2012) A missing link in genotype-directed cancer therapy. Cell 151, 465-468. https://doi.org/10.1016/j.cell.2012.10.014
- Birsoy, K., Wang, T., Possemato, R., Yilmaz, O. H., Koch, C. E., Chen, W. W., Hutchins, A. W., Gultekin, Y., Peterson, T. R., Carette, J. E., Brummelkamp, T. R., Clish, C. B. and Sabatini, D. M. (2013) MCT1-mediated transport of a toxic molecule is an effective strategy for targeting glycolytic tumors. Nat. Genet. 45, 104-108.
- Brook, J., Bateman, J. R. and Steinfeld, J. L. (1964) Evaluation of Melphalan (Nsc-8806) in Treatment of Multiple Myeloma. Cancer Chemother. Rep. 36, 25-34.
- Buck, E., Eyzaguirre, A., Haley, J. D., Gibson, N. W., Cagnoni, P. and Iwata, K. K. (2006) Inactivation of Akt by the epidermal growth factor receptor inhibitor erlotinib is mediated by HER-3 in pancreatic and colorectal tumor cell lines and contributes to erlotinib sensitivity. Mol. Cancer Ther. 5, 2051-2059. https://doi.org/10.1158/1535-7163.MCT-06-0007
- Cancer Genome Atlas Network (2012) Comprehensive molecular portraits of human breast tumours. Nature 490, 61-70. https://doi.org/10.1038/nature11412
- Chabner, B. A. and Roberts, T. G., Jr. (2005) Timeline: Chemotherapy and the war on cancer. Nat. Rev. Cancer 5, 65-72. https://doi.org/10.1038/nrc1529
- Chan, S. (2004) Targeting the mammalian target of rapamycin (mTOR): a new approach to treating cancer. Br. J. Cancer 91, 1420-1424. https://doi.org/10.1038/sj.bjc.6602162
- Cheong, H., Lu, C., Lindsten, T. and Thompson, C. B. (2012) Therapeutic targets in cancer cell metabolism and autophagy. Nat. Biotechnol. 30, 671-678. https://doi.org/10.1038/nbt.2285
- DeBerardinis, R. J., Mancuso, A., Daikhin, E., Nissim, I., Yudkoff, M., Wehrli, S. and Thompson, C. B. (2007) Beyond aerobic glycolysis: transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis. Proc. Natl. Acad. Sci. U.S.A. 104, 19345-19350. https://doi.org/10.1073/pnas.0709747104
- Edmonson, J. H., Lagakos, S., Stolbach, L., Perlia, C. P., Bennett, J. M., Mansour, E. G., Horton, J., Regelson, W., Cummings, F. J., Israel, L., Brodsky, I., Shnider, B. I., Creech, R. and Carbone, P. P. (1976) Mechlorethamine (NSC-762) plus CCNU (NSC-79037) in the treatment of inoperable squamous and large cell carcinoma of the lung. Cancer Treat. Rep. 60, 625-627.
- Ertmer, A., Huber, V., Gilch, S., Yoshimori, T., Erfle, V., Duyster, J., Elsasser, H. P. and Schatzl, H. M. (2007) The anticancer drug imatinib induces cellular autophagy. Leukemia 21, 936-942.
- Evans, J. M., Donnelly, L. A., Emslie-Smith, A. M., Alessi, D. R. and Morris, A. D. (2005) Metformin and reduced risk of cancer in diabetic patients. BMJ 330, 1304-1305. https://doi.org/10.1136/bmj.38415.708634.F7
- Fan, J., Ye, J., Kamphorst, J. J., Shlomi, T., Thompson, C. B. and Rabinowitz, J. D. (2014) Quantitative flux analysis reveals folatedependent NADPH production. Nature 510, 298-302. https://doi.org/10.1038/nature13236
- Fausel, C. (2007) Targeted chronic myeloid leukemia therapy: Seeking a cure. Am. J. Health Syst. Pharm. 64, S9-15.
- Fisher, B. K. and Elliott, G. B. (1965) Triple drug therapy with actinomycin D (Nsc-3053), chlorambucil (Nsc-3088), and methotrexate (Nsc-740) in metastatic solid tumors in children. Cancer Chemother. Rep. 45, 45-51.
- Foley, J. F. and Kennedy, B. J. (1964) Effect of cyclophosphamide (Nsc-26271) on far-advanced neoplasia. Cancer Chemother. Rep. 34, 55-58.
- Gilman, A. (1963) The initial clinical trial of nitrogen mustard. Am. J. Surg. 105, 574-578. https://doi.org/10.1016/0002-9610(63)90232-0
- Goldman, J. M. and Melo, J. V. (2003) Chronic myeloid leukemia-- advances in biology and new approaches to treatment. N. Engl. J. Med. 349, 1451-1464. https://doi.org/10.1056/NEJMra020777
- Gorzalczany, Y., Gilad, Y., Amihai, D., Hammel, I., Sagi-Eisenberg, R. and Merimsky, O. (2011) Combining an EGFR directed tyrosine kinase inhibitor with autophagy-inducing drugs: a beneficial strategy to combat non-small cell lung cancer. Cancer Lett. 310, 207-215. https://doi.org/10.1016/j.canlet.2011.07.002
- Haugrud, A. B., Zhuang, Y., Coppock, J. D. and Miskimins, W. K. (2014) Dichloroacetate enhances apoptotic cell death via oxidative damage and attenuates lactate production in metformin-treated breast cancer cells. Breast Cancer Res. Treat. 147, 539-550. https://doi.org/10.1007/s10549-014-3128-y
- Hay, N. and Sonenberg, N. (2004) Upstream and downstream of mTOR. Genes Dev. 18, 1926-1945. https://doi.org/10.1101/gad.1212704
- Jackson, R. C. (1987) Unresolved issues in the biochemical pharmacology of antifolates. NCI Monogr. 9-15.
- Jacobs, E. M., Peters, F. C., Luce, J. K., Zippin, C. and Wood, D. A. (1968) Mechlorethamine HCl and cyclophosphamide in the treatment of Hodgkin's disease and the lymphomas. JAMA 203, 392-398. https://doi.org/10.1001/jama.1968.03140060016005
- Janku, F., McConkey, D. J., Hong, D. S. and Kurzrock, R. (2011) Autophagy as a target for anticancer therapy. Nat. Rev. Clin. Oncol. 8, 528-539. https://doi.org/10.1038/nrclinonc.2011.71
- Jiralerspong, S., Palla, S. L., Giordano, S. H., Meric-Bernstam, F., Liedtke, C., Barnett, C. M., Hsu, L., Hung, M. C., Hortobagyi, G. N. and Gonzalez-Angulo, A. M. (2009) Metformin and pathologic complete responses to neoadjuvant chemotherapy in diabetic patients with breast cancer. J. Clin. Oncol. 27, 3297-3302. https://doi.org/10.1200/JCO.2009.19.6410
- Kanzawa, T., Germano, I. M., Komata, T., Ito, H., Kondo, Y. and Kondo, S. (2004) Role of autophagy in temozolomide-induced cytotoxicity for malignant glioma cells. Cell Death Differ. 11, 448-457. https://doi.org/10.1038/sj.cdd.4401359
- Kimura, T., Takabatake, Y., Takahashi, A. and Isaka, Y. (2013) Chloroquine in cancer therapy: a double-edged sword of autophagy. Cancer Res. 73, 3-7.
- Klionsky, D. J., Abdalla, F. C., Abeliovich, H., Abraham, R. T., Acevedo- Arozena, A. and Adeli, K., et al. (2012) Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy 8, 445-544. https://doi.org/10.4161/auto.19496
- Lander, E. S., Linton, L. M., Birren, B., Nusbaum, C., Zody, M. C. and Baldwin, J., et al. (2001) Initial sequencing and analysis of the human genome. Nature 409, 860-921. https://doi.org/10.1038/35057062
- Lottmann, H. B., Margaryan, M., Bernuy, M., Rouffet, M. J., Bau, M. O., El-Ghoneimi, A., Aigrain, Y., Stenberg, A. and Lackgren, G. (2002) The effect of endoscopic injections of dextranomer based implants on continence and bladder capacity: a prospective study of 31 patients. J. Urol. 168, 1863-1867. https://doi.org/10.1016/S0022-5347(05)64431-X
- Michelakis, E. D., Webster, L. and Mackey, J. R. (2008) Dichloroacetate (DCA) as a potential metabolic-targeting therapy for cancer. Br. J. Cancer 99, 989-994. https://doi.org/10.1038/sj.bjc.6604554
- Nieman, K. M., Kenny, H. A., Penicka, C. V., Ladanyi, A., Buell-Gutbrod, R., Zillhardt, M. R., Romero, I. L., Carey, M. S., Mills, G. B., Hotamisligil, G. S., Yamada, S. D., Peter, M. E., Gwin, K. and Lengyel, E. (2011) Adipocytes promote ovarian cancer metastasis and provide energy for rapid tumor growth. Nat. Med. 17, 1498-1503. https://doi.org/10.1038/nm.2492
- Regelson, W., Holland, J. F., Frei, E., 3rd, Gold, G. L., Hall, T., Krant, M. and Miller, S. O. (1964) Comparative clinical toxicity of 6-mercaptopurine (Nsc-755)-1 and 6-mercaptopurine ribonucleoside (Nsc-4911)-2 administered intravenously to patients with advanced cancer. Cancer Chemother. Rep. 36, 41-48.
- Robinson, M. M., McBryant, S. J., Tsukamoto, T., Rojas, C., Ferraris, D. V., Hamilton, S. K., Hansen, J. C. and Curthoys, N. P. (2007) Novel mechanism of inhibition of rat kidney-type glutaminase by bis-2-(5-phenylacetamido-1,2,4-thiadiazol-2-yl)ethyl sulfide (BPTES). Biochem. J. 406, 407-414. https://doi.org/10.1042/BJ20070039
- Sausville, E. A. and Johnson, J. I. (2000) Molecules for the millennium: how will they look? New drug discovery year 2000. Br. J. Cancer 83, 1401-1404. https://doi.org/10.1054/bjoc.2000.1473
- Seltzer, M. J., Bennett, B. D., Joshi, A. D., Gao, P., Thomas, A. G., Ferraris, D. V., Tsukamoto, T., Rojas, C. J., Slusher, B. S., Rabinowitz, J. D., Dang, C. V. and Riggins, G. J. (2010) Inhibition of glutaminase preferentially slows growth of glioma cells with mutant IDH1. Cancer Res. 70, 8981-8987. https://doi.org/10.1158/0008-5472.CAN-10-1666
- Sonveaux, P., Copetti, T., De Saedeleer, C. J., Vegran, F., Verrax, J., Kennedy, K. M., Moon, E. J., Dhup, S., Danhier, P., Frerart, F., Gallez, B., Ribeiro, A., Michiels, C., Dewhirst, M. W. and Feron, O. (2012) Targeting the lactate transporter MCT1 in endothelial cells inhibits lactate-induced HIF-1 activation and tumor angiogenesis. PloS One 7, e33418. https://doi.org/10.1371/journal.pone.0033418
- Sonveaux, P., Vegran, F., Schroeder, T., Wergin, M. C., Verrax, J., Rabbani, Z. N., De Saedeleer, C. J., Kennedy, K. M., Diepart, C., Jordan, B. F., Kelley, M. J., Gallez, B., Wahl, M. L., Feron, O. and Dewhirst, M. W. (2008) Targeting lactate-fueled respiration selectively kills hypoxic tumor cells in mice. J. Clin. Invest. 118, 3930-3942.
- Sooparb, S., Price, S. R., Shaoguang, J. and Franch, H. A. (2004) Suppression of chaperone-mediated autophagy in the renal cortex during acute diabetes mellitus. Kidney Int. 65, 2135-2144. https://doi.org/10.1111/j.1523-1755.2004.00639.x
- Spear, B. B., Heath-Chiozzi, M. and Huff, J. (2001) Clinical application of pharmacogenetics. Trends Mol. Med. 7, 201-204. https://doi.org/10.1016/S1471-4914(01)01986-4
- Stegmeier, F., Warmuth, M., Sellers, W. R. and Dorsch, M. (2010) Targeted cancer therapies in the twenty-first century: lessons from imatinib. Clin. Pharmacol. Ther. 87, 543-552. https://doi.org/10.1038/clpt.2009.297
- Strausberg, R. L., Simpson, A. J., Old, L. J. and Riggins, G. J. (2004) Oncogenomics and the development of new cancer therapies. Nature 429, 469-474. https://doi.org/10.1038/nature02627
- Takeuchi, H., Kondo, Y., Fujiwara, K., Kanzawa, T., Aoki, H., Mills, G. B. and Kondo, S. (2005) Synergistic augmentation of rapamycin-induced autophagy in malignant glioma cells by phosphatidylinositol 3-kinase/protein kinase B inhibitors. Cancer Res. 65, 3336-3346.
- Vander Heiden, M. G. (2011) Targeting cancer metabolism: a therapeutic window opens. Nature reviews. Nat. Rev. Drug Discov. 10, 671-684. https://doi.org/10.1038/nrd3504
- Venter, J. C., Adams, M. D., Myers, E. W., Li, P. W., Mural, R. J. and Sutton, G. G., et al. (2001) The sequence of the human genome. Science 291, 1304-1351. https://doi.org/10.1126/science.1058040
- Ward, P. S. and Thompson, C. B. (2012) Metabolic reprogramming: a cancer hallmark even warburg did not anticipate. Cancer Cell 21, 297-308. https://doi.org/10.1016/j.ccr.2012.02.014
- Wilhelm, S. M., Adnane, L., Newell, P., Villanueva, A., Llovet, J. M. and Lynch, M. (2008) Preclinical overview of sorafenib, a multikinase inhibitor that targets both Raf and VEGF and PDGF receptor tyrosine kinase signaling. Mol. Cancer Ther. 7, 3129-3140. https://doi.org/10.1158/1535-7163.MCT-08-0013
- Yun, M., Bang, S. H., Kim, J. W., Park, J. Y., Kim, K. S. and Lee, J. D. (2009) The importance of acetyl coenzyme A synthetase for 11Cacetate uptake and cell survival in hepatocellular carcinoma. J. Nucl. Med. 50, 1222-1228. https://doi.org/10.2967/jnumed.109.062703
- Zakikhani, M., Dowling, R., Fantus, I. G., Sonenberg, N. and Pollak, M. (2006) Metformin is an AMP kinase-dependent growth inhibitor for breast cancer cells. Cancer Res. 66, 10269-10273. https://doi.org/10.1158/0008-5472.CAN-06-1500
- Zhao, Y., Liu, H., Riker, A. I., Fodstad, O., Ledoux, S. P., Wilson, G. L. and Tan, M. (2011) Emerging metabolic targets in cancer therapy. Front. Biosci. 16, 1844-1860. https://doi.org/10.2741/3826
Cited by
- Glutaminase 1 inhibition reduces thymidine synthesis in NSCLC vol.477, pp.3, 2016, https://doi.org/10.1016/j.bbrc.2016.06.095
- Nonessential amino acid metabolism in breast cancer vol.62, 2016, https://doi.org/10.1016/j.jbior.2016.01.001
- Autophagy is an important metabolic pathway to determine leukemia cell survival following suppression of the glycolytic pathway vol.474, pp.1, 2016, https://doi.org/10.1016/j.bbrc.2016.04.098
- 18α-Glycyrrhetinic acid lethality for neuroblastoma cells via de-regulating the Beclin-1/Bcl-2 complex and inducing apoptosis vol.117, 2016, https://doi.org/10.1016/j.bcp.2016.08.006
- Inhibition of glioblastoma tumorspheres by combined treatment with 2-deoxyglucose and metformin 2016, https://doi.org/10.1093/neuonc/now174
- Oxidative stress and metabolic disorders: Pathogenesis and therapeutic strategies vol.148, 2016, https://doi.org/10.1016/j.lfs.2016.02.002
- Evaluation on the inhibition of pyrrol-2-yl ethanone derivatives to lactate dehydrogenase and anticancer activities vol.165, 2016, https://doi.org/10.1016/j.saa.2016.04.010
- A Patent Analysis for the Strategic Landscape of Firms: Cancer Metabolism vol.5, pp.3, 2016, https://doi.org/10.7545/ajip.2016.5.3.293
- G9a Inhibition Induces Autophagic Cell Death via AMPK/mTOR Pathway in Bladder Transitional Cell Carcinoma vol.10, pp.9, 2015, https://doi.org/10.1371/journal.pone.0138390
- Cancer Metabolism: a Hope for Curing Cancer vol.26, pp.1, 2018, https://doi.org/10.4062/biomolther.2017.300
- Synthesis and crystal structures of phenylalanine ester-introduced palladium(II) and platinum(II) complexes and their cytotoxicities vol.45, pp.1, 2019, https://doi.org/10.1007/s11164-018-3623-6
- Regulation of bioenergetics through dual inhibition of aldehyde dehydrogenase and mitochondrial complex I suppresses glioblastoma tumorspheres vol.20, pp.7, 2015, https://doi.org/10.1093/neuonc/nox243
- Targeting cancer energy metabolism: a potential systemic cure for cancer vol.42, pp.2, 2019, https://doi.org/10.1007/s12272-019-01115-2
- Cancer-specific metabolism: Promising approaches for colorectal cancer treatment vol.11, pp.10, 2015, https://doi.org/10.4251/wjgo.v11.i10.768
- Role of Sphingosylphosphorylcholine in Tumor and Tumor Microenvironment vol.11, pp.11, 2015, https://doi.org/10.3390/cancers11111696
- A systematic flux analysis approach to identify metabolic vulnerabilities in human breast cancer cell lines vol.7, pp.1, 2019, https://doi.org/10.1186/s40170-019-0207-x
- Combinatorial Therapeutic Effect of Inhibitors of Aldehyde Dehydrogenase and Mitochondrial Complex I, and the Chemotherapeutic Drug, Temozolomide against Glioblastoma Tumorspheres vol.26, pp.2, 2015, https://doi.org/10.3390/molecules26020282
- Tumor pyruvate kinase M2 modulators: a comprehensive account of activators and inhibitors as anticancer agents vol.12, pp.7, 2015, https://doi.org/10.1039/d1md00045d
- Cancer Patient Tissueoid with Self‐Homing Nano‐Targeting of Metabolic Inhibitor vol.8, pp.22, 2021, https://doi.org/10.1002/advs.202102640