DOI QR코드

DOI QR Code

Hydration Properties of Ordinary Portland Cement Using Mixture of Limestone and Blast Furnace Slag as Minor Inorganic Additives

소량 혼합재로서 석회석과 고로슬래그를 복합 사용한 보통 포틀랜드 시멘트의 수화특성

  • Lee, Seung-Heun (Dept. of Materials Science and Engineering, Kunsan National University) ;
  • Lim, Young-Jin (Dept. of Materials Science and Engineering, Kunsan National University) ;
  • Cho, Jae-Woo (Korea Conformity Laboratories)
  • 이승헌 (군산대학교 신소재공학과) ;
  • 임영진 (군산대학교 신소재공학과) ;
  • 조재우 (한국건설생활환경시험연구원)
  • Received : 2014.01.07
  • Accepted : 2014.11.11
  • Published : 2015.02.28

Abstract

In this study, hydration properties of ordinary Portland cement were examined, shown from a limestone and blast furnace slag alone or their mixture up to 10% as a minor mineral additives. As of setting time, it was identified that final setting became faster as the amount of limestone mixture increased, which showed limestone accelerated early hydration faster than blast furnace slag. This is because limestone did accelerate the hydration of alite. At the age of 3 days, limestone 5%-blast furnace slag 5% mixture had the highest compressive strength of mortar. It is because hydration acceleration of alite by limestone, and $Ca(OH)_2$ that was additionally formed by hydration acceleration of alite reacted with blast furnace slag, and as a result, additionally created C-S-H hydrate. Regarding the hydration properties by the age of 7 and 28 days, limestone 3%-blast furnace slag 7% of composited mixture showed the largest compressive strength, and in comparison with the 3 days in curing age. This period is when hydration reaction of blast furnace slag is active and the amount of hydrate depends on the amount of blast furnace slag mixture more than that of the limestone mixture. And in order to vitalize hydration reaction of blast furnace slag the amount of $Ca(OH)_2$ created has to increase, and thus, a small amount of limestone is necessary that can accelerate the hydration of alite. Therefore, after the age of 7 days, the fact that there were a large amount of blast furnace slag mixture and small amount of limestone mixture was effective to the strength development of ordinary Portland cement.

본 연구에서는 소량 혼합재로서 석회석과 고로슬래그를 단독 또는 복합으로 10%까지 혼합하면서 나타나는 보통 포틀랜드 시멘트의 수화특성에 대해 고찰하였다. 응결시간은 석회석과 고로슬래그를 복합하여 10% 혼합한 경우, 석회석의 혼합량이 증가할수록 Alite의 수화반응을 촉진시켜 종결이 빨라졌다. 재령 3일에서 모르타르의 압축강도는 석회석 5%-고로슬래그 5% 혼합이 가장 컸다. 이러한 이유로는 석회석에 의한 Alite의 수화촉진에 의해 생성된 C-S-H 수화물과 Alite의 수화촉진에 의해 부가적으로 생성된 $Ca(OH)_2$가 일부 고로슬래그와 반응하여 추가적으로 C-S-H 수화물을 생성하였기 때문이다. 재령 7, 28일에서는 석회석 3%-고로슬래그 7%의 복합 혼합이 가장 큰 압축강도를 나타냈다. 이 시기에는 고로슬래그의 수화반응이 활발한 시기로 C-S-H 수화물 생성량은 석회석의 혼합량보다 고로슬래그의 혼합량에 의존한다. 그리고 고로슬래그의 수화반응을 활성화하기 위해서는 $Ca(OH)_2$ 생성량이 증가해야 하므로, Alite의 수화를 활성화 시키는 소량의 석회석이 필요하다. 따라서 재령 7일 이후에는 고로슬래그의 혼합량이 많고 석회석의 혼합량이 적은 것이 보통 포틀랜드 시멘트의 강도발현에 효과적이었다.

Keywords

References

  1. Korea Concrete Institute, Concrete and Environment, Kimoondang Publishing Company, Seoul, 2011, pp. 32-46.
  2. Kim, S. H. and Hwang, J. P., "The $CO^2$ Emission in the Process of Cement Manufacture Depending on the $CO^2$ Content", Journal of the Korea Concrete Institute, Vol. 25, No. 4, 2013, pp. 365-370. https://doi.org/10.4334/JKCI.2013.25.4.365
  3. Flower, D. J. M. and Sanjayan, J. G., "Greenhouse Gas Emission due to Concrete Manufacture", The International Journal of Life Cycle Assesment, Vol. 12, 2007, pp. 282-288. https://doi.org/10.1007/s11367-007-0327-3
  4. Schneider, M., Romer, M., Tschudin, M., and Bolio, H., "Sustainable Cement Production-Present and Future", Cement and Concrete Research, Vol. 41, 2011, pp. 642-650. https://doi.org/10.1016/j.cemconres.2011.03.019
  5. Gartner, E. M. and Macphee, D. E., "A Physico-Chemical Basis for Novel Cementitious Binders", Cement and Concrete Research, Vol. 41, 2011, pp. 736-749. https://doi.org/10.1016/j.cemconres.2011.03.006
  6. Yoshino, R. and Sumita, M., "Determination of Cement Phase Composition by the Rietveld Method", Cement Science and Concrete Technology, No. 53, 1999, pp. 84-89.
  7. Toby, B. H., "R Factors in Rietveld Analysis: How Good is Good Enough," Powder Diffraction, Vol. 21, No. 1, 2006, pp. 67-70. https://doi.org/10.1154/1.2179804
  8. Kawakami, H., Fujisawa, J., Nawa, T., and Kurumisawa, K., "Quantitative Study of Calcium Silicate Hydration by XRD/Rietveld Analysis", Cement Science and Concrete Technology, No. 62, 2008, pp. 39-46.
  9. Scrivener, K. L., Fullmann, T., Gallucci, E., Walenta, G., and Bermejo, E., "Quantitative Study of Portland Cement Hydration by X-Ray Diffraction/Rietveld Analysis and Independent Method", Cement and Concrete Research, Vol. 34, 2004, pp. 1541-1547. https://doi.org/10.1016/j.cemconres.2004.04.014
  10. Hawkins, P., Tennis, P., and Detwiler, R., "The Use of Limestone in Portland Cement: A State of the Art Review", EB227, Portland Cement Association, 2003.
  11. Matschei, T., Lothenbach, B., and Glasser, F. P., "The Role of Calcium Carbonate in Cement Hydration", Cement and Concrete Research, Vol. 37, 2007, pp. 551-558. https://doi.org/10.1016/j.cemconres.2006.10.013
  12. Hoshino, S., Yamada, K., Hirao, H., and Yamashita, H., "A Study on the Hydration Analysis by X-Ray Diffraction/Rietveld Method and the Mechanism of Strength Development of Cement Including Limestone Powder", Cement Science and Concrete Technology, No. 60, 2006, pp. 47-54.
  13. Bonavetti, V., Donza, H., Rahhal, V., and Irassar, E., "Influence of Initial Curing on the Properties of Concrete Containing Limestone Blended Cement", Cement and Concrete Research, Vol. 30, 2000, pp. 703-708. https://doi.org/10.1016/S0008-8846(00)00217-9
  14. Vuk, T., Tinta, V., Gabrovsek, R., and Kaucic, V., "The Effects of Limestone Addition, Clinker Type and Fineness on Properties of Portland Cement", Cement and Concrete Research, Vol. 31, 2001, pp. 135-139. https://doi.org/10.1016/S0008-8846(00)00427-0
  15. Asaga, K. and Kuga, H., "Effect of Various Particle Size of Calcium Carbonate Powders on the Hydration of Portland Cement", JCA Proceedings of Cement & Concrete, No. 51, 1997, pp. 20-25.

Cited by

  1. Cyclic Loading Test for Concrete-Filled Hollow Precast Concrete Columns Produced by Using a New Fabrication Method vol.143, pp.4, 2017, https://doi.org/10.1061/(ASCE)ST.1943-541X.0001703