DOI QR코드

DOI QR Code

Effects of Promoter on the Formation of Gas Hydrate from Blast Furnace Gas

철강공정 배기가스로부터 가스 하이드레이트 형성에 미치는 촉진제의 영향

  • Kwak, Gye-Hoon (Department of Chemical Engineering, Pohang University of Science & Technology) ;
  • Sa, Jeong-Hoon (Department of Chemical Engineering, Pohang University of Science & Technology) ;
  • Kim, Si-Hwan (CO2 Project Team, Research Institute of Industrial Science & Technology) ;
  • Lee, Bo Ram (Chemical and Biological Engineering Department, Colorado School of Mines) ;
  • Lee, Kun-Hong (Department of Chemical Engineering, Pohang University of Science & Technology)
  • Received : 2014.05.30
  • Accepted : 2014.08.24
  • Published : 2015.02.01

Abstract

In this work, the performance of various promoters was investigated used in $CO_2$ separation from the gases emitted from steel-making process using gas hydrate technology. The studied promoters are tetrahydrofuran (THF), propylene oxide and 1,4-dioxane, which are all expected to form a structure II hydrate, and the target gases include $CO_2/N_2$ mixed gases ($CO_2/N_2$ = 20/80 and 40/60) and Blast Furnace Gas (BFG). The phase equilibrium points were measured when each promoter was added with various concentrations. For fast acquisition of abundant data, the "continuous" Quartz crystal microbalance (QCM) method was employed. In addition, the crystal structure of each gas hydrate was analyzed by Powder X-ray diffraction (PXRD).

본 연구에서는 가스 하이드레이트 기술을 이용하여 철강 공정 배기가스로부터 $CO_2$를 분리하는데 사용하는 여러 촉진제의 성능을 조사하였다. 이 실험에서는 $CO_2/N_2$ 혼합가스 ($CO_2/N_2$=20/80, 40/60)와 $CO_2/N_2$ 이외에 CO, $H_2$가 첨가된 Blast furnace gas (BFG) 모델 가스를 대상 가스로 사용하였다. 촉진제로는 구조 II 하이드레이트를 형성한다고 알려진 tetrahydrofuran (THF), propylene oxide, 1,4-dioxane 를 사용하였으며, 각 가스에 대하여 촉진제를 농도별로 첨가했을 때 상평형점의 변화를 측정하였다. 상평형점은 "연속" Quartz crystal microbalance (QCM) 방식을 이용하였다. 또한, Powder X-ray diffraction (PXRD) 분석을 통하여 촉진제의 첨가가 가스 하이드레이트 구조에 미치는 영향을 알아보았다.

Keywords

References

  1. https://www.ipcc.ch/report/ar5/wg1.
  2. Association, W. S., "World Steel in Figures 2008. Brussels: World steel association," (2008).
  3. http://www.gir.go.kr/og/hm/ic/g/OGHMICG010M.do?year=2012&headerValue=04&leftValue=02.
  4. http://www.ieagreen.org.uk/sr2p.htm.
  5. Kang, S.-P. and Lee, H., "Recovery of $CO_2$ from Flue Gas Using Gas Hydrate: Thermodynamic Verification Through Phase Equi-Librium Measurements," Environ. Sci. Technol., 34, 4397(2000). https://doi.org/10.1021/es001148l
  6. Lee, B. R., Ryu, J.-H., Han, K., Park, D.-H., Lee, K.-H. and Lee, I.-B., "Recent Research Trends on Separation of $CO_2$ Emitted From Steelmaking Process using Gas Hydrate Technology," Korean Chem. Eng. Res., 48, 232(2010).
  7. Sloan Jr, E. D. and Koh, C., Clathrate Hydrates of Natural Gases, CRC press(2007).
  8. Seo, Y.-T., Kang, S.-P. and Lee, H., "Experimental Determination and Thermodynamic Modeling of Methane and Nitrogen Hydrates in the Presence of THF, Propylene oxide, 1, 4-dioxane and Acetone," Fluid Phase Equilib., 189, 99(2001). https://doi.org/10.1016/S0378-3812(01)00580-5
  9. Saito, Y., Kawasaki, T., Kondo, T. and Hiraoka, R., "Methane Storage in Hydrate Phase with Water Soluble Guests," Proceeding of the Second International Conference on Gas Hydrate, Toulouse, France, pp. 459-465(1996).
  10. Maekawa, T., "Equilibrium Conditions of Clathrate Hydrates Formed from Carbon Dioxide and Aqueous Acetone Solutions," Fluid Phase Equilib., 303, 76(2011). https://doi.org/10.1016/j.fluid.2011.01.011
  11. Seo, Y., Kang, S.-P., Lee, S. and Lee, H., "Experimental Measurements of Hydrate Phase Equilibria for Carbon Dioxide in the Presence of THF, Propylene Oxide, and 1, 4-dioxane," J. Chem. Eng. Data, 53, 2833(2008). https://doi.org/10.1021/je800566y
  12. Mohammadi, A. H., Martinez-Lopez, J. F. and Richon, D., "Determining Phase Diagrams of Tetrahydrofuran + Methane, Carbon Dioxide or Nitrogen Clathrate Hydrates Using an Artificial Neural Network Algorithm," Chem. Eng. Sci., 65, 6059(2010). https://doi.org/10.1016/j.ces.2010.07.013
  13. Strobel, T. A., Koh, C. A. and Sloan, E. D., "Thermodynamic Predictions of Various Tetrahydrofuran and Hydrogen Clathrate Hydrates," Fluid Phase Equilib., 280, 61(2009). https://doi.org/10.1016/j.fluid.2009.02.012
  14. Yoon, J.-H., "A Theoretical Prediction of Cage Occupancy and Heat of Dissociation of THF-$CH_4$ Hydrate," Korean J. Chem. Eng., 29, 1670(2012). https://doi.org/10.1007/s11814-012-0137-6
  15. Fan, S., Liang, D. and Guo, K., "HydrRAate Equilibrium Conditions for Cyclopentane and a Quaternary Cyclopentane-rich Mixture," J. Chem. Eng. Data, 46, 930(2001). https://doi.org/10.1021/je010026l
  16. Trueba, A. T., Rovetto, L. J., Florusse, L. J., Kroon, M. C. and Peters, C. J., "Phase Equilibrium Measurements of Structure II Clathrate Hydrates of Hydrogen with Various Promoters," Fluid Phase Equilib., 307, 6(2011). https://doi.org/10.1016/j.fluid.2011.04.025
  17. Zhang, J. and Lee, J. W., "Equilibrium of Hydrogen + Cyclopentane and Carbon Dioxide + Cyclopentane Binary Hydrates," J. Chem. Eng. Data, 54, 659(2008).
  18. Zhang, J. and Lee, J. W., "Enhanced Kinetics of $CO_2$ Hydrate Formation Under Static Conditions," Ind. Eng. Chem. Res., 48, 5934(2008).
  19. Mohammadi, A. H. and Richon, D., "Phase Equilibria of Clathrate Hydrates of Methyl Cyclopentane, Methyl Cyclohexane, Cyclopentane or Cyclohexane + Carbon Dioxide," Chem. Eng. Sci., 64, 5319(2009). https://doi.org/10.1016/j.ces.2009.09.048
  20. Lim, Y.-A., Babu, P., Kumar, R. and Linga, P., "Morphology of Carbon Dioxide-hydrogen-cyclopentane Hydrates with or Without Sodium Dodecyl Sulfate," Crystal Growth & Design 13, 2047(2013). https://doi.org/10.1021/cg400118p
  21. Shimada, W., Ebinuma, T., Oyama, H., Kamata, Y., Takeya, S., Uchida, T., Nagao, J. and Narita, H., "Separation of Gas Molecule Using Tetra-n-butyl Ammonium Bromide Semi-clathrate Hydrate Crystals," Jpn. J. Appl. Phys., 42, L129(2003). https://doi.org/10.1143/JJAP.42.L129
  22. Kamata, Y., Oyama, H., Shimada, W., Ebinuma, T., Takeya, S., Uchida, T., Nagao, J. and Narita, H., "Gas Separation Method Using Tetra-n-butyl Ammonium Bromide Semi-clathrate Hydrate," Jpn. J. Appl. Phys., 43, 362(2004). https://doi.org/10.1143/JJAP.43.362
  23. Shin, K., Kim, Y., Strobel, T. A., Prasad, P., Sugahara, T., Lee, H., Sloan, E. D., Sum, A. K. and Koh, C. A., "Tetra-n-butylammonium Borohydride Semiclathrate: A Hybrid Material for Hydrogen Storage," J. Phys. Chem. A, 113, 6415(2009).
  24. Acosta, H. Y., Bishnoi, P. R. and Clarke, M. A., "Experimental Measurements of the Thermodynamic Equilibrium Conditions of Tetra-n-butylammonium Bromide Semiclathrates Formed from Synthetic Landfill Gases," J. Chem. Eng. Data, 56, 69(2010).
  25. Lee, S., Lee, Y., Park, S. and Seo, Y., "Phase Equilibria of Semiclathrate Hydrate for Nitrogen in the Presence of Tetra-n-Butylammonium Bromide and Fluoride," J. Chem. Eng. Data, 55, 5883 (2010). https://doi.org/10.1021/je100886b
  26. Chapoy, A., Gholinezhad, J. and Tohidi, B., "Experimental Clathrate Dissociations for the Hydrogen + Water and Hydrogen + Tetrabutylammonium Bromide + Water Systems," J. Chem. Eng. Data, 55, 5323(2010). https://doi.org/10.1021/je100466k
  27. Li, G., Liu, D. and Xie, Y., "Study on Thermal Properties of TBAB-THF Hydrate Mixture for Cold Storage by Dsc," J. Therm. Anal. Calorim., 102, 819(2010). https://doi.org/10.1007/s10973-010-0796-7
  28. Oshima, M., Shimada, W., Hashimoto, S., Tani, A. and Ohgaki, K., "Memory Effect on Semi-clathrate Hydrate Formation: A Case Study of Tetragonal Tetra-n-butyl Ammonium Bromide Hydrate," Chem. Eng. Sci., 65, 5442(2010). https://doi.org/10.1016/j.ces.2010.07.019
  29. Rodionova, T., Komarov, V., Villevald, G., Aladko, L., Karpova, T. and Manakov, A., "Calorimetric and Structural Studies of Tetrabutylammonium Chloride Ionic Clathrate Hydrates," J. Phys. Chem. B, 114, 11838(2010). https://doi.org/10.1021/jp103939q
  30. Deschamps, J. and Dalmazzone, D., "Hydrogen Storage in Semiclathrate Hydrates of Tetrabutyl Ammonium Chloride and Tetrabutyl Phosphonium Bromide," J. Chem. Eng. Data, 55, 3395(2010). https://doi.org/10.1021/je100146b
  31. Li, S., Fan, S., Wang, J., Lang, X. and Wang, Y., "Semiclathrate Hydrate Phase Equilibria for $CO_2$ in the Presence of Tetra-n-Butyl Ammonium Halide (bromide, chloride, or fluoride)," J. Chem. Eng. Data, 55, 3212(2010). https://doi.org/10.1021/je100059h
  32. Sun, Z.-G. and Sun, L., "Equilibrium Conditions of Semi-clathrate Hydrate Dissociation for Methane + Tetra-n-butyl Ammonium Bromide," J. Chem. Eng. Data, 55, 3538(2010). https://doi.org/10.1021/je100183s
  33. Li, X.-S., Xu, C.-G., Chen, Z.-Y. and Wu, H.-J., "Tetra-n-butyl Ammonium Bromide Semi-clathrate Hydrate Process for Post-combustion Capture of Carbon Dioxide in the Presence of Dodecyl Trimethyl Ammonium Chloride," Energy, 35, 3902(2010). https://doi.org/10.1016/j.energy.2010.06.009
  34. Li, X.-S., Xia, Z.-M., Chen, Z.-Y., Yan, K.-F., Li, G. and Wu, H.- J., "Equilibrium Hydrate Formation Conditions for the Mixtures of $CO_2$ + $H_2$ + Tetrabutyl Ammonium Bromide," J. Chem. Eng. Data, 55, 2180(2009).
  35. Mayoufi, N., Dalmazzone, D., Furst, W., Delahaye, A. and Fournaison, L., "$CO_2$ Enclathration in Hydrates of Peralkyl-(ammonium/ phosphonium) Salts: Stability Conditions and Dissociation Enthalpies," J. Chem. Eng. Data, 55, 1271(2009).
  36. Makino, T., Yamamoto, T., Nagata, K., Sakamoto, H., Hashimoto, S., Sugahara, T. and Ohgaki, K., "Thermodynamic Stabilities of Tetra-n-butyl Ammonium Chloride + $H_2$, $N_2$, $CH_4$, $CO_2$, or $C_2H_6$ Semiclathrate Hydrate Systems," J. Chem. Eng. Data, 55, 839 (2009).
  37. Deschamps, J. and Dalmazzone, D., "Dissociation Enthalpies and Phase Equilibrium for TBAB Semi-clathrate Hydrates of $N_2$, $CO_2$, $N_2$ + $CO_2$ and $CH_4$ + $CO_2$," J. Therm. Anal. Calorim., 98, 113(2009). https://doi.org/10.1007/s10973-009-0399-3
  38. Fan, S., Li, S., Wang, J., Lang, X. and Wang, Y., "Efficient Capture of $CO_2$ from Simulated Flue Gas by Formation of TBAB or TBAF Semiclathrate Hydrates," Energy Fuels, 23, 4202(2009). https://doi.org/10.1021/ef9003329
  39. Lee, B. R., Sa, J.-H., Park, D.-H., Cho, S., Lee, J., Kim, H.-J., Oh, E., Jeon, S., Lee, J. D. and Lee, K.-H., "Continuous" Method for the Fast Screening of Thermodynamic Promoters of Gas Hydrates Using a Quartz Crystal Microbalance," Energy Fuels, 26, 767(2011).
  40. Sa, J.-H., Kwak, G.-H., Lee, B. R., Park, D.-H., Han, K. and Lee, K.-H., "Hydrophobic Amino Acids as a New Class of Kinetic Inhibitors for Gas Hydrate Formation," Scientific Reports, 3 (2013).
  41. Seo, Y.-T. and Lee, H., "Structure and Guest Distribution of the Mixed Carbon Dioxide and Nitrogen Hydrates as Revealed by X-ray Diffraction and 13c Nmr Spectroscopy," J. Phys. Chem. B, 108, 530(2004). https://doi.org/10.1021/jp0351371
  42. Florusse, L. J., Peters, C. J., Schoonman, J., Hester, K. C., Koh, C. A., Dec, S. F., Marsh, K. N. and Sloan, E. D., "Stable Low-pressure Hydrogen Clusters Stored in a Binary Clathrate Hydrate," Science, 306, 469 (2004). https://doi.org/10.1126/science.1102076
  43. Alavi, S., Susilo, R. and Ripmeester, J. A., "Linking Microscopic Guest Properties to Macroscopic Observables in Clathrate Hydrates: Guest-host Hydrogen Bonding," J. Chem. Phys., 130, 174501(2009). https://doi.org/10.1063/1.3124187
  44. Van Cleeff, A. and Diepen, G., "Gas Hydrates of Nitrogen and Oxygen Ii," Recueil des Travaux Chimiques des Pays-Bas 84, 1085(1965).
  45. Adisasmito, S., Frank III, R. J. and Sloan Jr, E. D., "Hydrates of Carbon Dioxide and Methane Mixtures," J. Chem. Eng. Data, 36, 68(1991). https://doi.org/10.1021/je00001a020