DOI QR코드

DOI QR Code

Optimum Conditions for Introducing Free Radical Polymerizable Methacrylate Groups on the MWCNT Surface by Michael Addition Reaction

MWCNT 표면에 Michael 부가 반응으로 자유 라디칼 중합 가능한 Methacrylate기 도입에 대한 최적 개질 조건

  • Kim, Sunghoon (Department of Chemical Engineering, Keimyung University) ;
  • Park, Seonghwan (Department of Chemical Engineering, Keimyung University) ;
  • Kwon, Jaebeom (Department of Chemical Engineering, Keimyung University) ;
  • Ha, KiRyong (Department of Chemical Engineering, Keimyung University)
  • Received : 2014.10.01
  • Accepted : 2014.12.26
  • Published : 2015.02.01

Abstract

In this study, we investigated optimum conditions for the introduction of a lot of free radical polymerizable methacrylate groups on the multi-walled carbon nanotube (MWCNT) surface. Carboxyl groups were introduced first on MWCNT surfaces by treating with a mixture of sulfuric acid and nitric acid with ultrasonic bath for 2 hours, and oxidized MWCNTs were reacted further with thionyl chloride followed by triethylenetetramine (TETA) to introduce amino groups on the oxidized MWCNT surface, to make MWCNT-$NH_2$. To introduce free radical polymerizable methacrylate groups on the MWCNT-$NH_2$, MWCNT-$NH_2$ was reacted with 3-(acryloyloxy)-2-hydroxypropyl methacrylate (AHM) by Michael addition reaction. We investigated progress of modification reactions for MWCNT by fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA) and elemental analysis (EA). We found maximum degree of Michael addition reactions between AHM and TETA grafted on MWCNT-$NH_2$ for 10:1 mol ratio and 8 hour reaction time in our reaction conditions.

본 연구에서는 multi-walled carbon nanotube (MWCNT) 표면에 자유 라디칼 중합 가능한 methacrylate기를 다량으로 도입하기 위한 연구를 수행하였다. 먼저, MWCNT 표면에 카르복실기(-COOH)를 도입하기 위하여 황산과 질산의 혼산으로 초음파로 처리하면서 2시간 산화시켜 MWCNT-COOH를 합성하였다. 합성된 MWCNT-COOH를 염화티오닐(thionyl chloride)와 반응시켜 MWCNT-COCl을 합성하고, triethylenetetramine (TETA)와 반응시켜 MWCNT-$NH_2$를 합성하였다. 합성된 MWCNT-$NH_2$와 3-(acryloyloxy)-2-hydroxypropyl methacrylate (AHM)의 투입 몰 비를 변화시키면서 Michael 부가 반응으로 MWCNT 표면에 methacrylate기가 도입된 MWCNT-AHM을 합성하였다. MWCNT의 표면 개질정도는 fourier transform infrared (FTIR) spectroscopy, thermogravimetric analysis (TGA)와 원소분석(elemental analysis, EA) 분석을 통해 개질 반응의 진행 정도와 최적 개질 조건을 확인하였다. 그 결과 MWCNT-$NH_2$에 접목되어 있는 TETA에 대하여 AHM의 반응 몰 비를 1:10로 하고 8시간 반응시켰을 때 methacrylate기가 가장 많이 도입되는 조건임을 확인하였다.

Keywords

References

  1. Iijima, S., "Helical Microtubules of Graphitic Carbon," Nature, 354(7), 56-58(1991). https://doi.org/10.1038/354056a0
  2. Ajayan, P. M., "Nanotubes from Carbon," Chem. Rev, 99(7), 1787-1799(1999). https://doi.org/10.1021/cr970102g
  3. Cooper, C. A., Ravich, D., Lips, D., Mayer, J., and Wagner, H. D., "Distribution and Alignment of Carbon Nanotubes and Nanofibrils in a Polymer Matrix," Compos. Sci. Technol., 62(7-8), 1105-1112(2002). https://doi.org/10.1016/S0266-3538(02)00056-8
  4. Potschke, P., Abdel-Goad, M., Alig, I., Dudkin, S., and Lellinger, D., "Rheological and Dielectrical Characterization of Melt Mixed Polycarbonate-multiwalled Carbon Nanotube Composites," Polymer, 45(26), 8863-8870(2004). https://doi.org/10.1016/j.polymer.2004.10.040
  5. Samakande, A., Hartmann, P. C., Cloete V., and Sanderson, R. D., "Use of Acrylic Based Surfmers for the Preparation of Exfoliated Polystyrene-clay Nanocomposites," Polymer, 48(6), 1490-1499(2007). https://doi.org/10.1016/j.polymer.2006.07.072
  6. Park, H. S., "Study About the In-situ Synthesis and Structure Control of Multi-walled Carbon Nanotubes and their Nanocomposites," Korean Chem. Eng. Res., 50(4), 729-732(2012). https://doi.org/10.9713/kcer.2012.50.4.729
  7. Lee, K. H., Kim, Y. D., Lee, M. H., Min, B. H. and Kim, J. H, "Study on the Properties of Polystyrene and Styrenic Copolymer Containing Carbon Nanotubes and Nanoclay," J. Korean Ind. Eng. Chem., 20(5), 493-499(2009).
  8. Thess, A., Lee, R., Nikolaev, P., Dai, H. J., Petit, P., Robert, J., Xu, C. H., Lee, Y. H., Kim, S. G., Rinzler, A. G., et al. "Crystalline Ropes of Metallic Carbon Nanotubes," Science, 273(5274), 483-487(1996). https://doi.org/10.1126/science.273.5274.483
  9. Yun, C. H. and Lee, H. S., "Carbon Nanotube Composite," Polym. Sci. Tech., 18(1), 4-7(2007).
  10. Moon, J. Y., Park, D. J., Lim, J. H., Rotermund, F., Lee, S. and Ahn, Y. H., "Optical Constant Measurements of Highly Conductive Carbon Nanotube Films by Using Time-domain Terahertz Spectroscopy," Korean J. Opt. Photon., 21(1), 33-37(2010). https://doi.org/10.3807/KJOP.2010.21.1.033
  11. Lee, J. I. and Jung, H. T., "Technical Status of Carbon Nanotubes Composites," Korean Chem. Eng. Res., 46(1), 7-14(2008).
  12. Ryu, J. H. and Nam, B. U., "Dispersibility of Multi-walled Carbon Nanotubes Functionalized with Butyl and Hexyl Group," Journal of the Korea Academia-Industrial cooperation Society, 11(7), 2713-2718(2010). https://doi.org/10.5762/KAIS.2010.11.7.2713
  13. Kim, S. S., Kim, H. J., Yoo, Y. J., Lee, S. G., Choi, K. Y. and Lee, J. H., "Effects of the Surface Modification on the Dispersion of Carbon Nanotube," J. Adhes. Inter., 4(4), 22-27(2003).
  14. Zhang, Y., Shi, Z., Gu, Z. and Iijima, S., "Structure Modification of Single-wall Carbon Nanotubes," Carbon, 38(15), 2055-2059(2000). https://doi.org/10.1016/S0008-6223(00)00047-6
  15. Kyotani, T., Nakazaki, S. and Tomita, A., "Chemical Modification of the Inner Walls of Carbon Nanotubes by $HNO_3$ Oxidation," Carbon, 39(5), 782-785(2001). https://doi.org/10.1016/S0008-6223(01)00013-6
  16. Zhang, M., Su, L. and Mao, L., "Surfactant Functionalization of Carbon Nanotubes (CNTs) for Layer-by-layer Assembling of CNT Multi-layer Films and Fabrication of Gold Nanoparticle/CNT Nanohybrid," Carbon, 44(2), 276-283(2006). https://doi.org/10.1016/j.carbon.2005.07.021
  17. Santos, V. C., Hernandez, A. L. and Castano, V. M., in E. V. Dirote (Ed.), Chemical Functionalization on Carbon Nanotubes: Principles and Applications," Nova Science Publishers., New York, 51-78(2004).
  18. Wang, D., Lu, S. and Jiang, S. P., "Tetrahydrofuran-functionalized Multi-walled Carbon Nanotubes as Effective Support for Pt and PtSn Electrocatalysts of Fuel Cells," Electrochim. Acta, 55(8), 2964-2971(2010). https://doi.org/10.1016/j.electacta.2010.01.031
  19. Shao, L., Bai, Y., Huang, X, Gao, Z., Meng, L., Huang, Y. and Ma, J., "Multi-walled Carbon Nanotubes (MWCNTs) Functionalized with Amino Groups by Reacting with Supercritical Ammonia Fluids," Mater. Chem. Phys., 116(2-3), 323-326(2009). https://doi.org/10.1016/j.matchemphys.2009.04.015
  20. Lee, S. M. and Ha, K. R., "Spectroscopic Analysis on the Michael Addition Reaction between Secondary Amino Groups on the Silica Surface with 3-(acryloyloxy)-2-hydroxypropyl Methacrylate," Polymer(Korea), 38(2), 1-8(2013).
  21. Li, G. Y., Wang, P. M. and Zhao, X., "Mechanical Behavior and Microstructure of Cement Composites Incorporating Surface-treated Multi-walled Carbon Nanotubes," Carbon, 43(6), 1239-1245(2005). https://doi.org/10.1016/j.carbon.2004.12.017
  22. Jimeno, A., Goyanes, S., Eceiza, A., Kortaberria, G., Mondragon, I. and Corcuera, M. A., "Effects of Amine molcular Structure on Carbon Nanotubes Functionalization," J. Nanosci. Nanotechnol., 9(10), 6222-6227(2009). https://doi.org/10.1166/jnn.2009.1562
  23. Cui, L. J., Geng, H. Z., Wang, W. Y., Chen, L. T. and Gao, J., "Functionalization of Multi-wall Carbon Nanotubes to Reduce the Coefficient of the Friction and Improve the Wear Resistance of Multiwall Carbon Nanotube/epoxy Composites," Carbon, 54, 277-282 (2013). https://doi.org/10.1016/j.carbon.2012.11.039
  24. Yang, K., Gu, M., Guo, Y., Pan, X. and Mu, G., "Effects of Carbon Nanotube Functionalization on the Mechanical and Thermal Properties of Epoxy Composites," Carbon, 47(7), 1723-1737(2009). https://doi.org/10.1016/j.carbon.2009.02.029
  25. Brindaban, C. R., Suvendu, S. D. and Alakananda, H., "Solvent-free, Catalyst-free Michael-type Addition of Amines to Electron-deficient Alkenes," ARKIVOC, 7, 76-81(2002).
  26. Kishor, P. D., Pawan, J. T., Rekha, S. S. and Bhalchandra, M. B., "Promiscuous Candida antarctica lipase B-catalyzed synthesis of $\beta$-amino Esters via Aza-Michael Addition of Amines to Acrylates," Tetrahedron Lett., 51(33), 4455-4458(2010). https://doi.org/10.1016/j.tetlet.2010.06.089
  27. Larkin, P., Infrared and Raman Spectroscopy: Principles and Spectral Interpretation, 1st ed., Elsevier, New York, 107(2011).
  28. Faraj, A. A, Tahar, L., Mamdouh, A. H. and Muataz, A. A., "Modification and Functionalization of Multiwalled Carbon Nanotubes (MWCNT) via Fischer Esterification," The Arabian Journal for Science and Engineering(AJSE), 35(1C), 37-48(2010).
  29. Socrates, G., Infrared Characteristic Group Frequencies: Table and Chart, 2nd ed., John Wiley & Sons, New York, 105(1994).

Cited by

  1. 다중벽 탄소나노튜브와 니켈 분말을 포함하는 전도성 복합체 제조 vol.54, pp.3, 2015, https://doi.org/10.9713/kcer.2016.54.3.410