DOI QR코드

DOI QR Code

Synthesis of Hollow Silica Particles from Sodium Silicate using Organic Template Particles

유기 주형 입자를 이용한 소디움 실리케이트로부터 중공형 실리카 입자 제조

  • Lee, Chongmin (Rare Metals Research Division, Korea Institute of Geoscience and Mineral Resources) ;
  • Kim, Jiwoong (Rare Metals Research Division, Korea Institute of Geoscience and Mineral Resources) ;
  • Chang, Hankwon (Rare Metals Research Division, Korea Institute of Geoscience and Mineral Resources) ;
  • Roh, Ki-Min (Rare Metals Research Division, Korea Institute of Geoscience and Mineral Resources) ;
  • Jang, Hee Dong (Rare Metals Research Division, Korea Institute of Geoscience and Mineral Resources)
  • 이총민 (한국지질자원연구원 희유자원활용연구실) ;
  • 김지웅 (한국지질자원연구원 희유자원활용연구실) ;
  • 장한권 (한국지질자원연구원 희유자원활용연구실) ;
  • 노기민 (한국지질자원연구원 희유자원활용연구실) ;
  • 장희동 (한국지질자원연구원 희유자원활용연구실)
  • Received : 2014.06.13
  • Accepted : 2014.07.16
  • Published : 2015.02.01

Abstract

Hollow silica particles were prepared using sodium silicate and organic templates. Polystyrene latex (PSL) particles produced by dispersion polymerization were used as organic templates. PSL particles ranged from $1{\mu}m$ to $3{\mu}m$ in diameter were synthesized by adjusting the amount of 2,2'-azobisisobutyronitrile (AIBN). The PSL/$SiO_2$ core-shell particles were prepared by coating of silica nanoparticles originated from sodium silicate using sol-gel method. The organic templates were removed by the organic solvent, tetrahydrofuran (THF). Morphology of hollow silica particles was investigated with respect to types of the reaction medium and pH during the process. By changing the solvent from ethanol to water, hollow silica particles were successfully formed. Hollow silica particles with the uniform shell thickness were produced at low pH as well. The reflectivity of the as-prepared silica particles was measured in the range of the wavelength of UV and visible light. Hollow silica particles showed much better reflective properties than the commercial light reflector, Insuladd.

유기주형(organic template) 입자를 이용하여 소디움실리케이트(sodium silicate)로부터 중공형 실리카(hollow silica) 입자를 제조하였다. 유기주형 입자로는 스티렌 단량체(styrene monomer)로부터 분산중합(dispersion polymerization)에 의해 제조된 폴리스티렌 라텍스(polystyrene latex, PSL) 입자를 사용하였다. 유기주형 입자 제조 시 중합개시제인 2,2'-azobisisobutyronitrile(AIBN)의 주입량을 조절하여 $1{\sim}3{\mu}m$의 크기를 가진 입자를 제조하였다. 생성된 유기주형 입자 표면에 졸-겔(sol-gel)법에 의해 소디움실리케이트로부터 생성된 실리카($SiO_2$) 나노 입자를 코팅하여 PSL/$SiO_2$ 코어-쉘 형태의 입자를 제조하였다. 유기용매인 테트라하이드로푸란(tetrahydrofuran, THF)을 이용하여 코어-쉘 입자 내부의 유기주형을 제거 하였다. 코어-쉘 입자 제조 시 용매의 종류 및 pH의 변화에 따라 생성되는 중공형 실리카 입자의 형상을 조사하였다. PSL/$SiO_2$ 코어-쉘 입자 제조 시 용매를 에탄올에서 물로 변경했을 때 중공형 실리카 입자가 성공적으로 제조되었으며 낮은 pH 값을 갖는 용매에서 쉘 두께가 균일한 중공형 실리카 입자가 형성되었다. 중공형 실리카 입자의 반사도를 측정한 결과 상용 제품(Insuladd)보다 높은 반사 특성을 보여주었다.

Keywords

References

  1. Feng, Z., Li, Y., Niu, D., Li, L., Zhao, W., Chen, H., Li, L., Gao, J., Ruan, M. and Shi, J., "A Facile Route to Hollow Nanospheres of Mesoporous Silica with Tunable Size," Chem. Commun., 44, 2629(2008).
  2. Xu, L., Du, J., Deng, Y. and He, N., "Electrochemical Detection of E. coli O157:H7 Using Porous Pseudo-Carbon Paste Electrode Modified with Carboxylic Multi-Walled Carbon Nanotubes, Glutaraldehyde and 3-Aminopropyltriethoxysilane," J. Biomed Nanotechnol., 8, 1006(2012). https://doi.org/10.1166/jbn.2012.1456
  3. He, N., Deng, Y., Xu, L., Li, Z. and Li, X., "Preparation of Silicotungstenic Acid-Containing Mesoporous Materials," J. Biomed Nanotechnol., 10, 8463(2010).
  4. Hope, E. G., Sherrington, J. and Stuart, A. M., "Supported Fluorous Phase Catalysis on PTFE, Fluoroalkylated Micro- and Meso-porous Silica," Adv. Synth. Catal., 348, 1635(2006). https://doi.org/10.1002/adsc.200606141
  5. Miyao, T., Minoshima, K., Kurokawa, Y., Shinohara, K., Shen, W. and Naito, S., "Marked Capability for Hydrogen Occlusion of Hollow Silica Nanospheres Containing Group 8-10 Metal Clusters," Catal. Today, 132, 132(2008). https://doi.org/10.1016/j.cattod.2007.12.077
  6. Lay, C. L., Liu, H. Q., Wu, D. and Liu, Y., "Poly(ethylene glycol)-Graft-Hollow Silica Vesicles for Drug Delivery," Chem. Eur. J., 16, 3001(2010). https://doi.org/10.1002/chem.200903291
  7. Chen, Y., Chen, H., Zeng, D., Tian, Y., Chen, F., Feng, J. and Shi, J., "Core/Shell Structured Hollow Mesoporous Nanocapsules: A Potential Platform for Simultaneous Cell Imaging and Anticancer Drug Delivery," ACS Nano, 4, 6001(2010). https://doi.org/10.1021/nn1015117
  8. Chen, H., He, J., Tang, H. and Yan, C., "Porous Silica Nanocapsules and Nanospheres: Dynamic Self-Assembly Synthesis and Application in Controlled Release," Chem. Mater., 20, 5894(2008). https://doi.org/10.1021/cm801411y
  9. Hughes, G. A., "Nanostructure-Mediated Drug Delivery," Nanomedicine: Nanotechnology, Biology and Medicine, 1, 22(2005). https://doi.org/10.1016/j.nano.2004.11.009
  10. Chen, H., He, J., Tang, H. and Yan, C., "Porous Silica Nanocapsules and Nanospheres: Dynamic Self-Assembly Synthesis and Application in Controlled Release," Chem. Mater., 20, 5894(2008). https://doi.org/10.1021/cm801411y
  11. Trewyn, B. G., Slowing, I. I., Giri, S., Chen, H. T. and Lin, V. S. Y., "Synthesis and Functionalization of a Mesoporous Silica Nanoparticle Based on the Sol-Gel Process and Applications in Controlled Release," Acc. Chen. Res., 40, 846(2007). https://doi.org/10.1021/ar600032u
  12. Yang, J., Lee, J., Kang, J., Lee, K., Suh, J. S., Yoon, H. G., Huh, Y. M. and Haam, S., "Hollow Silica Nanocontainers as Drug Delivery Vehicles," Langmuir, 24, 3417(2008). https://doi.org/10.1021/la701688t
  13. Lay, C. l., Liu, H. Q., Wu, D. and Liu, Y., "Poly(ethylene glycol)- Graft-Hollow Silica Vesicles for Drug Delivery," Chem. Eur. J., 16, 3001(2010). https://doi.org/10.1002/chem.200903291
  14. Liu, C., Ge, C., Wang, A., Yin, H., Ren, M., Zhang, Y., Yu, L. and Jiang, T., "Synthesis of Porous Hollow Silica Spheres using Functionalized Polystyrene Latex Spheres as Templates," Korean J. Chem. Eng., 28, 1458(2011). https://doi.org/10.1007/s11814-010-0366-5
  15. Waston, D. R., Carithers, V. G. and Drown, H. L., "Hollow Ceramic Balls as Automotive Catalysts Supports," US Patent, 4, 039, 480(1977).
  16. Kawahashi, N. and Matijevic, E., "Preparation of Hollow Spherical Particles of Yttrium Compounds," J. Colloid Interf. Sci., 143, 103(1991). https://doi.org/10.1016/0021-9797(91)90442-B
  17. Kentepozidou, A., Kiparissides, C., Kotzia, F., Kollia, C. and Spyrellis, N., "Nickel/Microcapsules Composite Electrocoatings; the Synthesis of Water-Containing Microcapsules and Preparation of the Coatings," J. Mat. Sci., 31, 1176(1996).
  18. Shim, S. E., Yang, S., Lee, H., Kim, G. P. and Choe, S., "Size and Uniformity Variation of Poly(MMA-co-DVB) Particles upon Precipitation Polymerization," Macromol. Res., 12, 519-527(2004). https://doi.org/10.1007/BF03218437
  19. Fesmire, J. E. and Augustynowicz, S. D., "Equipment and Methods for Cryogenic Thermal Insulation Testing," Adv. Cryog. Eng., 49, 612-618(2004).
  20. Allen, M. S., Baumgartner, R. G., Fesmire, J. E. and Augustynowicz, S. D., "Advances in Microsphere Insulation Systems," Adv. Cryog. Eng., 49, 619-626(2004).
  21. Kim, J. W., Lee, J. W., Choi, J. W. and Jang, H. D., "Synthesis and Characterization of Hollow Silica Particles from Tetraethyl Orthosilicate and Sodium Silicate," J. Nanosci. Nanotech., 13, 2284(2013). https://doi.org/10.1166/jnn.2013.7074
  22. Kim, J. W., Lee, J. W., Jang, H. K., Choi, J. W. and Jang, H. D., "Synthesis of Hollow Silica Particles with Tunable Size, Shell Thickness, and Morphology," J. Cryst. Growth, 373, 128(2013). https://doi.org/10.1016/j.jcrysgro.2012.09.047
  23. Heish, H. L. and Quirk, R. P., "Anionic Polymerization; Principles and Practices," Academic, NewYork(1996).
  24. Barrett, K. E. J., "Dispersion Polymerization in Organic Media," Wiley, London(1975).
  25. Almong, Y., Reich, S. and Levy, M., "Monodisperse Polymeric Spheres in the Micron Size Range by a Single Step Process," J. Brit, Polym. J., 14, 131(1982). https://doi.org/10.1002/pi.4980140402
  26. Corner, T., "Polyelectrolyte Stabilised Latices Part 1, Preparation," Colloids Surf. 3, 119(1981). https://doi.org/10.1016/0166-6622(81)80072-8
  27. Ober, C. K., Lok, K. P. and Hari, M. L., "Monodispersed, Micron- Sized Polystyrene Particles by Dispersion Polymerization," J. Polym. Sci.: Polym. Lett. Ed., 23, 103(1985). https://doi.org/10.1002/pol.1985.130230209
  28. Szwarc, M., Levy, M. and Milkovich, R., "Polymerization Initiated by Electron Transfer to Monomer. A New Method of Formation of Block Polymers1," J. Am. Chem. Soc., 78, 2656(1956). https://doi.org/10.1021/ja01592a101
  29. Hawker, C. J., "Advances in Living Free-radical Polymerization: Architectural and Structural Control," Trends Polym. Sci., 4, 183(1996).
  30. Bao, Y., Yang, Y. and Ma, J., "Fabrication of Monodisperse Hollow Silica Spheres and Effect on Water Vapor Permeability of Polyacrylate Membrane," J. Colloid Interface Sci., 407, 155-163(2013). https://doi.org/10.1016/j.jcis.2013.06.045
  31. Gabriel, A. O. and Riedel, R., "Preparation of Non-Oxidic Silicon Ceramics by an Anhydrous Sol-Gel Process," Angew. Chem.-Int. Edit., 36, 384-386(1997). https://doi.org/10.1002/anie.199703841
  32. He, F., Wang, X. and Wu, D., "New Approach for Sol-Gel Synthesis of Microencapsulated n-Octadecane Phase Change Material with Silica Wall using Sodium Silicate Precursor," Energy, 67, 6(2014).
  33. Iler, R. K., "The Chemistry of Silica: Solubility, Polymerization, Colloid and Surface Properties, and Biochemistry," Wiley, New York(1979).
  34. Friedlander, S. K., "Smoke, Dust, and Haze: Fundamentals of Aerosol Dynamics," Oxford University Press(2000).

Cited by

  1. 주형합성을 통한 메조포러스 TiO2 제조 및 실리카 메조포어 내부에서의 TiO2 상전이 거동 변화 vol.56, pp.2, 2015, https://doi.org/10.9713/kcer.2018.56.2.261