DOI QR코드

DOI QR Code

Synthesis of p-Phenylenediamine (PPD) using Supercritical Ammonia

초임계 암모니아를 이용한 p-Phenylenediamine(PPD) 합성 및 특성연구

  • Cho, Hang-Kyu (Chemical and Biomolecular Engineering, Sogang University) ;
  • Lim, Jong Sung (Chemical and Biomolecular Engineering, Sogang University)
  • 조항규 (서강대학교 화공생명공학과) ;
  • 임종성 (서강대학교 화공생명공학과)
  • Received : 2014.07.18
  • Accepted : 2014.08.31
  • Published : 2015.02.01

Abstract

In this study, investigated the synthesis method of p-Phenylenediamine (PPD) by amination of p-Diiodobenzene (PDIB) under supercritical ammonia and CuI catalyst conditions. We examined the effects of various process variables (e.g., reaction temperature, pressure, amount of ammonia inserted, amount of catalyst inserted, and reaction time) on the production yield of PPD by analyzing the Gas Chromatography (GC). The experimental results demonstrated that PPD was not produced under non-catalyst conditions, and PPD production yield increased with increasing temperature, pressure, amount of catalyst inserted, and reaction time. However, for the reaction temperature case, it was found that $200^{\circ}C$ was the optimal temperature, because thermal degradation of PPD occurred above $250^{\circ}C$. In addition, we confirmed the structure of PPD and the bonding characteristics of the amine group via FT-IR and H-NMR analysis.

초임계 암모니아 분위기와 CuI 촉매 하에서 p-Diiodobenzene(PDIB)를 아민화 반응시켜 p-Phenylenediamine(PPD)를 합성하는 방법을 연구하였다. 본 연구에서는 여러 가지 공정변수들이 PPD 생성 수율에 미치는 영향을 알아보기 위하여 반응 온도, 암모니아 초기 주입 양에 따른 반응 압력, 촉매의 유무 및 촉매 주입량, 반응 시간 등을 변화시키면서 이에 따른 PPD 수율 변화를 GC 분석을 통하여 조사하였다. 그 결과, 무촉매 반응 시에는 PPD가 전혀 생성되지 않음을 알 수 있었으며, 반응온도, 반응 압력, 촉매 주입량 및 반응시간이 증가함에 따라 PPD 생성 수율이 증가하는 것을 확인할 수 있었다 단, 반응온도의 경우 $250^{\circ}C$ 이상에서는 열분해에 의해 PPD가 감소하여 $200^{\circ}C$가 최적의 온도임을 알 수 있었다. 또한, FT-IR과 $^1H$-NMR 분석을 통하여 아민기의 결합 특성과 PPD의 구조를 확인하였다.

Keywords

References

  1. Jang, J. S., "High Performance Organic Fibers," J. Ind. Eng. Chem., 4(3), 437-446(1993).
  2. Wahab, M. A., Kim, I. and Ha, C. S., "Microstructure and Properties of 3,3,4,4-Biphenyltetracarboxylic Dianhydride (BPDA)-p-Phenylene Diamine (PDA) Polyimide/Poly(vinylsilsesquioxane) Hybrid Nanocomposite Films," J. Pol. Sci. Part A: Pol. Chem., 42(20), 5189-5199(2004). https://doi.org/10.1002/pola.20312
  3. Han, H., Seo, J., Ree, M., Pyo, S. M. and Gryte, C. C., "Water Sorption and Diffusion Behaviours in Thin Films of Photosensitive Polyimides," Polimery, 39(13), 2963-2972(1998). https://doi.org/10.1016/S0032-3861(97)00602-2
  4. Memeger Jr, W., Lazar, J., Ovenall, D. and Leach, R. A., "Macrocyclic Aramides (2n-aza [2n] Paracyclophane-2n-ones): New Intermediates for the Synthesis of p-aramids," Mac., 26(14), 3476-3484 (1993). https://doi.org/10.1021/ma00066a003
  5. Prokes, J., Stejskal, J., Krivka, I. and Tobolkova, E., "Anilinephenylenediamine Copolymers," Syn. Met., 102(1), 1205-1206(1999). https://doi.org/10.1016/S0379-6779(98)01223-5
  6. Zengel, H. G. and Bergfeld, M. J., "A New Process for the Production of p-Phenylenediamine Alternatively from Polyester Waste, Terephthalic Ester, or Terephthalic Acid," J. Ind. Eng. Chem., 15(3), 186-189(1976).
  7. Cho, C., K. and Chung, K. B., "Synthesis of High Purity p-Phenylenediamine from p-Nitroaniline by Catalytic Hydrogenation," J. Ind. Eng. Chem., 10(8), 1210-1215(1999).
  8. Kim, K. Y., Jin, H. K., Lee, S. B. and Lee, J. M., "A Study on the Synthesis of 2,4,6-Trichloroaniline by Chlorination of Aniline," Korean Chem. Eng. Res., 28(2), 230-236(1990).
  9. Nandakumar, M. V., "A Short and Efficient Methodology for the Synthesis of Novel 3-Aryloxazolidin-2-one Derivatives," Adv. Syn. Cat., 346(8), 954-958(2004). https://doi.org/10.1002/adsc.200303232
  10. Guo, X., Rao, H., Fu, H., Jiang, Y. and Zhao, Y., "An Inexpensive and Efficient Copper Catalyst for N-Arylation of Amines, Amides and Nitrogen-Containing Heterocycles," Adv. Syn. Cat., 348(15), 2197-2202(2006). https://doi.org/10.1002/adsc.200606198
  11. Cansell, F., Chevalier, B., Demourgues, A., Etourneau, J., Even, C., Pessey, V. and Weill, F., "Supercritical Fluid Processing: a New Route for Materials Synthesis," J. Mater. Chem., 9(1), 67-75(1999). https://doi.org/10.1039/a804964e
  12. Lee, Y. W., "Design of Particles using Supercritical Fluids," Korean Chem. Eng. Res., 41(6), 679-688(2003).
  13. Kang, S. R. and Ju, C. S., "Preparation of Porous Polymer Monoliths in Supercritical Carbon Dioxide." Korean Chem. Eng. Res., 43(1), 21-26(2005).
  14. Tomasko, D. L., Li, H., Liu, D., Han, X., Wingert, M. J. and Lee, L., "A Review of $CO_2$ Applications in the Processing of Polymers," Ind. Eng. Chem. Res., 42(25), 6431-6456(2003). https://doi.org/10.1021/ie030199z
  15. Prabakar, S. R. and Narayanan, S., S., "Surface Modification of Amine-functionalised Graphite for Preparation of Cobalt Hexacyanoferrate (CoHCF)-Modified Electrode: an Amperometric Sensor for Determination of Butylated Hydroxyanisole (BHA)," Ana. Bio. Chem., 386(7-8), 2107-2115(2006). https://doi.org/10.1007/s00216-006-0854-y

Cited by

  1. Copper 촉매를 이용한 p-phenylenediamine (PPD) 합성에 관한 연구 vol.54, pp.3, 2015, https://doi.org/10.9713/kcer.2016.54.3.425