DOI QR코드

DOI QR Code

Lactic acid Production from Hydrolysate of Pretreated Cellulosic Biomass by Lactobacillus rhamnosus

전처리된 섬유소계 바이오매스로부터 Lactic acid생산

  • Ahn, Su Jin (Department of Chemical Engineering, Kyonggi University) ;
  • Cayetano, Roent Dune (Department of Environmental Engineering, Kongju National University) ;
  • Kim, Tae Hyun (Department of Environmental Engineering, Kongju National University) ;
  • Kim, Jun Seok (Department of Chemical Engineering, Kyonggi University)
  • 안수진 (경기대학교 화학공학과) ;
  • ;
  • 김태현 (국립공주대학교 환경공학과) ;
  • 김준석 (경기대학교 화학공학과)
  • Received : 2014.05.15
  • Accepted : 2014.06.07
  • Published : 2015.02.01

Abstract

Lactic acid, the most widely occurring hydroxy-carboxylic acid, has traditionally been used as food, cosmetic, pharmaceutical, and chemical industries. Even though it has tremendous potential for large scale production and use in a wide variety of applications, high cost lactic acid materials are primarily problems. Lactic acid can be obtained on either by fermentation or chemical synthesis. In recent years, the fermentation approach has become more successful because of the increasing market demand for naturally produced lactic acid. Generally, lactic acid was produced from pure starch or from glucose. As an alternative, biomass which is the most abundant renewable resources on earth have been considered for conversion to readily utilizable hydrolysate. In this study, we conducted the fermentation method to produce L(+)-lactic acid production from pretreated hydrolysate was investigated by Lactobacillus rhamnosus ATCC 10863. The hydrolysate was obtained from pretreatment process of biomass using Ammonia percolation process (AP) followed by enzymatic hydrolysis. In order to effectively enhance lactic acid conversion and product yield, controlled medium, temperature, glucose concentration was conducted under pure glucose conditions. The optimum conditions of lactic acid production was investigated and compared with those of hydrolysate.

Lactic acid(젖산)는 가장 널리 사용되는 Hydroxy-carboxylic acid로서 일반적으로 식품, 화장품, 의약품 및 화학산업의 원료로 사용된다. 하지만 다양한 분야의 적용과 대량생산의 광범위한 잠재력에도 불구하고 원재료의 높은 가격으로 인하여 Lactic acid 생산의 주된 문제가 된다. Lactic acid는 발효 또는 화학적 합성에 의하여 얻어진다. 최근, 자연적으로 생산되는 Lactic acid의 시장 수요가 증가하여 미생물 발효 방법에 의한 Lactic acid 생산을 일반적으로 사용한다. 일반적으로 Lactic acid 생산의 원재료는 순수한 전분 또는 글루코오스를 이용한다. 이의 경제적인 원재료의 대안으로, 지구상에서 가장 풍부한 재생가능 자원인 바이오매스를 가수분해물로 전환하여 이용한다. 본 연구에서는 Lactobacillus rhamnosus ATCC 10863을 이용하여 전처리 된 가수분해물로부터 발효 방법에 의해 L(+)-Lactic acid를 생산하였다. 전처리 된 가수분해물은 암모니아 침출 공정(AP) 후 효소 당화에 의하여 얻었다. 효과적으로 Lactic acid 생산 수율과 전환율을 높이기 위하여 순수 글루코오스 조건에서 배지, 온도, 글루코오스 농도를 조절하여 수행하였다. 발효 최적조건에서 순수 글루코오스와 가수분해물의 Lactic acid 생산을 비교하였다.

Keywords

References

  1. Sauer, M., Porro, D., Mattanovich, D. and Branduardi, P., "Microbial Production of Organic Acids: Expanding the Markets," Trends Biotechnol., 26, 100-108(2008). https://doi.org/10.1016/j.tibtech.2007.11.006
  2. Lu, Z., He, F., Shi, Y., Lu, M. and Yu, L., "Fermentative Production of L(+)-Lactic Acid Using Hydrolyzed Acorn Starch, Persimmon Juice and Wheat Bran Hydrolysate as Nutrients," Bioresour. Technol., 101, 3642-3648(2010). https://doi.org/10.1016/j.biortech.2009.12.119
  3. Phrueksawan, P., Kulpreecha, S., Sooksai, S. and Thongchul, N., "Direct Fermentation of l(+)-Lactic Acid from Cassava Pulp by Solid State Culture of Rhizopus Oryzae," Bioprocess. Biosyst. Eng., 35(8), 1429-1436(2012). https://doi.org/10.1007/s00449-012-0731-3
  4. Saito, K., Hasa, Y. and Abe, H., "Production of Lactic Acid from Xylose and Wheat Straw by Rhizopus Oryzae," J. Biosci. Bioeng., 114(2), 166-169(2012). https://doi.org/10.1016/j.jbiosc.2012.03.007
  5. Adsul, M. G., Varma, A. J. and Gokhale, D. V., "Lactic Acid Production from Waste Sugarcane Bagasse Derived Cellulose," Green Chem., 9, 58-62(2007). https://doi.org/10.1039/B605839F
  6. Dumbrepatil, A., Adsul, M., Chaudhari, S., Khire, J. and Gokhale, D., "Utilization of Molasses Sugar for Lactic Acid Production by Lactobacillus Delbrueckii Subsp. Delbrueckii Mutant Uc-3 in Batch Fermentation," Appl. Environ. Microbiology, 74, 333-335(2008). https://doi.org/10.1128/AEM.01595-07
  7. Timbuntam, W., Sriroth, K. and Tokiwa, Y., "Lactic Acid Production from Sugarcane Juice by a Newly Isolated Lactobacillus sp", Biotechnol. Lett, 28, 811-814(2006). https://doi.org/10.1007/s10529-006-9003-0
  8. Kumar, R. and Wyman, C. E., "Effect of Xylanase Supplementation of Cellulase on Digestion of Corn Stover Solids Prepared by Leading Pretreatment Technologies," Bioresour. Technol., 100(18), 4203-4213(2009). https://doi.org/10.1016/j.biortech.2008.11.057
  9. Kim, T. H., Kim, J. S., Sunwoo, C. S. and Lee, Y. Y., "Pretreatment of Corn Stover by Aqueous Ammonia," Bioresour. Technol., 90, 39-47(2003). https://doi.org/10.1016/S0960-8524(03)00097-X
  10. Kim, K. S. and Kim, J. S., "Characterization of Pretreatment for Barley Straw by Alkaline Solutions," Korean Chem. Eng. Res., 50(1), 18-24(2012). https://doi.org/10.9713/kcer.2012.50.1.018
  11. Han, M., Kim, Y., Kim Y., Chung, B. and Choi, G. W., "Bioethanol Production from Optimized Pretreatment of Cassava Stem," Korean J. Chem. Eng., 28(1), 119-125(2011). https://doi.org/10.1007/s11814-010-0330-4
  12. Hujanen, M., Linko, S., Linko, Y. Y. and Leisola, M., "Optimisation of Media and Cultivation Conditions for L(+)(S)-Lactic Acid Production by Lactobacillus Casei NRRL B-441," Appl. Microbiol. Biotechnol., 56, 126-130(2001). https://doi.org/10.1007/s002530000501

Cited by

  1. Adsorption Kinetics and Thermodynamics of Brilliant Blue FCF Dye onto Coconut Shell Based Activated Carbon vol.53, pp.3, 2015, https://doi.org/10.9713/kcer.2015.53.3.309
  2. Migration of nitrate, nitrite, and ammonia through the municipal solid waste incinerator bottom ash layer in the simulated landfill vol.24, pp.11, 2017, https://doi.org/10.1007/s11356-017-8706-1
  3. 김치에서 분리된 Lactobacillus buchneri의 젖산 생산 특성 vol.43, pp.3, 2015, https://doi.org/10.4014/mbl.1506.06006
  4. 열수전처리를 이용한 탈지미세조류로부터 발효당 생산 공정 개발 vol.54, pp.4, 2015, https://doi.org/10.9713/kcer.2016.54.4.443
  5. 활성탄을 이용한 Acid Yellow 14 흡착에 대한 평형, 동역학 및 열역학 파라미터의 연구 vol.54, pp.2, 2015, https://doi.org/10.9713/kcer.2016.54.2.255
  6. 푸르푸랄의 화학적 촉매전환을 통한 테트라히드로푸르푸릴 알코올 생산 공정 개발 및 경제성 평가 vol.55, pp.5, 2015, https://doi.org/10.9713/kcer.2017.55.5.609
  7. Malonic acid를 이용한 전처리가 꼬시레기의 가수분해에 미치는 영향 vol.56, pp.4, 2015, https://doi.org/10.9713/kcer.2018.56.4.542
  8. 반응표면분석법을 이용한 Lactobacillus paracasei SRCM201474의 생산배지 최적화 vol.30, pp.6, 2020, https://doi.org/10.5352/jls.2020.30.6.522