참고문헌
- R. F. Lu, Y. P. Lu, S. Y. Lee, et al, "Terahertz response in single-walled carbon nanotube transistor: a real-time quantum dynamics simulation", Nanotechnology, Vol. 20, no. 50, pp. 505401, 2009. https://doi.org/10.1088/0957-4484/20/50/505401
- D. Kienle, F. Leonard, "Terahertz response of carbon nanotube transistors", Phys. Rev. Lett., Vol. 103, no. 2, pp. 026601, 2000. https://doi.org/10.1103/PhysRevLett.103.026601
- S. J. Tans, A. R. M. Verschueren, C. Dekker, "Room-temperature transistor based on a single carbon nanotube", Nature, Vol. 393, no. 7, pp. 49-52, 1998. https://doi.org/10.1038/29954
- M. Shulaker, G. Hills, N. Patil, H. Wei, H. Y. Chen, et al, "Carbon nanotube computer", Nature, Vol. 501, pp. 526-530, 2013. https://doi.org/10.1038/nature12502
- M. Shulaker, J. V. Rethy, G. Hills, et al, "Experimental demonstration of a fully digital capacitive sensor interface built entirely using carbon nanotube FETs", in Proc. Int., pp. 112-113, 2013.
- A.Hazeghi, T. Krishnamohan, H.Wong, "Schottky-barrier carbon nanotube field-effect transistor modeling", IEEE Trans. Electron Devices, Vol. 54, no. 3, pp. 439-445, Mar. 2007. https://doi.org/10.1109/TED.2006.890384
- J.Guo, M. Lundstrom, S.Datta, "Performance projections for ballistic carbon nanotube field-effect transistors", Appl. Phys. Lett., Vol. 80, no. 17, pp. 3192-3194, Apr. 2002. https://doi.org/10.1063/1.1474604
- G. Fiori, G. Iannaccone, G. Klimeck, "A three-dimensional simulation study of the performance of carbon nanotube field-effect transistors with doped reservoirs and realistic geometry", IEEE Trans. Electron Devices, Vol.53, no. 8, pp. 1782-1788, Aug. 2006. https://doi.org/10.1109/TED.2006.878018
- A. A. Orouji, Z. Arefinia, "Detailed simulation study of a dual material gate carbon nanotube field-effect transistor", Phys. E: Low-dimensional Syst Nanostructures, Vol. 41, no. 10, pp. 552-557, Feb. 2009. https://doi.org/10.1016/j.physe.2008.10.005
- X. H. Liu, H. L. Zhao, T. Y. Li, et al, "Improvement on the electron transport efficiency of the carbon nanotube field effect transistor device by introducing heterogeneous-dual-metal-gate structure", Acta. Phys. Sin., Vol. 62, no. 14, pp. 147308, 2013.
- Z. Arefinia, A. A. Orouji, "Quantum simulation study of a new carbon nanotube field-effect transistor with electrically induced source/drain extension", IEEE Trans. Device Mater Reliab., Vol. 9, no. 2, pp. 237-243, Jun. 2009. https://doi.org/10.1109/TDMR.2009.2015458
- T. S. Xia, L. F. Register, S. K. Banerjee, "Simulation study of the carbon nanotube field effect transistors beyond the complex band structure effect", Solid-State Electron, Vol. 49, no. 5, pp. 860-864, May. 2005. https://doi.org/10.1016/j.sse.2005.02.002
- J. Guo, S. Hasan, A.Javey, et al, "Assessment of high- frequency performance potential for carbon nanotube transistors", IEEE Trans. Nanotechnol., Vol. 4, no. 6, pp. 715-721, Nov. 2005. https://doi.org/10.1109/TNANO.2005.858601
- L. Chen, D. L. Pulfrey, "Comparison of p-i-n and n-i-n carbon nanotube FETs regarding high-frequency performance", Solid-State Electron, Vol. 53, no. 9, pp. 935-939, 2009. https://doi.org/10.1016/j.sse.2009.05.006
- W. Wang, X. Yang, N. Li, et al, "The high-frequency performance of hetero-material-gate CNTFETs with gate underlap", Fullerenes, Nanotubes and Carbon Nanostructures, 2014.
- W. Long, H. Ou, J. Kuo, and K. K. Chin, "Dual-material gate(DMG) field effect transistors" IEEE Trans. Electron Devices, vol. 46, no. 5, pp. 865-870, May 1999. https://doi.org/10.1109/16.760391
- I. Polishchuk, P. Ranade, T. J. King, and C. Hu, "Dual work function metal gate CMOS technology using metal interdiffusion", IEEE Electron Device Lett., vol. 22, no. 9, pp. 444-446, Sep. 2001. https://doi.org/10.1109/55.944334
- Z. Zhang, S. C. Song, C. Huffman, et al, "Integration of dual metal gate CMOS on high-k dielectrics utilizing a metal wet etch process", Electrochem. Solid - State Lett., Vol. 8, no. 10, pp. G271-G274, 2005. https://doi.org/10.1149/1.2030447
- S. C. Song, Z. B. Zhang, M. M. Hussain, et al, "Highly manufacturable 45 nm LSTP CMOSFETs using novel dual high-k and dual metal gate CMOS integration" , VLSI Symp. Tech. Dig., pp. 13-14, 2006.
- Ji Cao, Adrian M. Lonescu, "Study on dual-lateral-gate suspended-body single-walled carbon nanotube field-effect transistors", Solid-State Electron, Vol. 74, pp.121-125, 2012. https://doi.org/10.1016/j.sse.2012.04.022
- Dinh Sy Hien, Nguyen Thi Luong, Thi Tran Anh Tuan, and Dinh Viet Nga, "3D Simulation of coaxial carbon nanotube field effect transistor", Journal of Physics: Conference Series, Vol. 187, no. 1, pp. 012061, 2009.
- Orouji A A, Arefinia Z, "Detailed simulation study of a dual material gate carbon nanotube field-effect transistor", Phys E: Low-dimensional Syst. Nanostructures, Vol. 41, no. 4, pp. 552-557, Feb. 2009. https://doi.org/10.1016/j.physe.2008.10.005
- Datta S, "Nanoscale device modeling: the Green's function method", Superlatt Microstruct, Vol. 28, no. 4, pp. 253-278, Oct. 2000. https://doi.org/10.1006/spmi.2000.0920
- W. Wang, T. Zhang, L. Zhang, et al, "High-frequency and switching performance investigations of novel lightly doped drain and source hetero-material-gate CNTFET", Materials Science in Semiconductor Processing, Vol. 21, pp. 132-139, 2014. https://doi.org/10.1016/j.mssp.2014.01.036
- Koswatta S O, Lundstrom M S, Nikonov D E, "Band-to-band tunneling in a carbon nanotube metal-oxide-semiconductor field-effect transistor is dominated by phonon-assisted tunneling", Nano. Lett., Vol. 7, no. 5, pp. 1160-1164, 2007. https://doi.org/10.1021/nl062843f
- Koswatta S O, Lundstrom M S, Anantram M P, et al, "Simulation of phonon-assisted band-to-band tunneling in carbon nanotube field-effect transistors", Applied Phy. Lett., Vol. 87, no. 25, pp. 253107, 2005. https://doi.org/10.1063/1.2146065
- Arefinia Z., "Investigation of the performance and band-to-band tunneling effect of a new double-halo-doping carbon nanotube field-effect transistor", Phys E: Low-dimensional Syst. Nanostructures, Vol. 41, no. 10, pp. 1767-1771, 2009. https://doi.org/10.1016/j.physe.2009.06.008
- J. Appenzeller, Y.-M. Lin, J. Knoch, Ph. Avouris, "Band-to-band tunneling in carbon nanotube field-effect transistors", Phy. Rev. Lett., Vol. 93, no. 19, pp. 2004.
- Hien D. S., Luong N. T., Tuan T. T. A., et al, "3D Simulation of coaxial carbon nanotube field effect transistor", Journal of Physics, Vol. 198, no. 1, pp. 012061, 2009.
- R. Yousefi, M. Shabani, M. Arjmandi, and S. S. Ghoreishi, "A computational study on electrical characteristics of a novel band-to-band tunneling graphene nanoribbon FET", Superlattices and Microstructures, Vol. 60, pp. 169-178, Aug. 2013. https://doi.org/10.1016/j.spmi.2013.05.003
- A. Naderi, P. Keshavarzi, "Novel carbon nanotube field effect transistor with graded double halo channel", Superlattices and Microstructures, Vol. 51, no. 5, pp. 668-679, May. 2012. https://doi.org/10.1016/j.spmi.2012.02.005
- Chris Dwyer, Moky Cheung, and Daniel J. Sorin, "Semi-empirical spice models for Carbon Nanotube FET logic", IEEE Conference on Nanotechnology, pp.386-388, 2004.
- Burke PJ, "An RF circuit model for carbon nanotubes", IEEE Trans. Nanotechnol., pp. 393-396, 2002.
- Yamacli S, Avci M, "Accurate SPICE compatible CNT interconnect and CNTFET models for circuit design and simulation", Mathematical and Computer Modelling, Vol. 58, no. 1, pp. 368-378, 2013. https://doi.org/10.1016/j.mcm.2012.11.014
- Rosenblatt S, Yaish Y, Park J, et al, "High performance electrolyte gated carbon nanotube transistors", Nano. Let., Vol. 2, no. 8, pp. 869-872, 2002. https://doi.org/10.1021/nl025639a
- Guo J, Goasguen S, Lundstrom M, et al, "Metal-insulator-semiconductor electrostatics of carbon nanotubes", Applied Physics Letters, Vol. 81, no. 8, pp. 1486-1488, 2002. https://doi.org/10.1063/1.1502188
- Sheng Lin, Yong-Bin Kim, and Fabrizio Lombardi, "Design of a CNTFET-Based SRAM Cell by Dual-Chirality Selection", IEEE Trans. Nanotechnol, Vol. 9, no. 1, pp. 30-37, Jan. 2010. https://doi.org/10.1109/TNANO.2009.2025128
- International Technology Roadmap for Semiconductors, available at http://public.itrs.net.