DOI QR코드

DOI QR Code

Geomorphological Approach to the Skewed Shape of Instantaneous Unit Hydrograph

순간단위도의 왜곡된 형상에 대한 지형학적 접근

  • Kim, Joo-Cheol (International Water Resources Research Institute, Chungnam National University) ;
  • Jung, Kwansue (Department of Civil Engineering, Chungnam National University) ;
  • Jeong, Dong Kug (Department of Civil Engineering, Hannam University)
  • 김주철 (충남대학교 국제수자원연구소) ;
  • 정관수 (충남대학교 토목공학과) ;
  • 정동국 (한남대학교 건설시스템공학과)
  • Received : 2014.10.27
  • Accepted : 2015.01.02
  • Published : 2015.02.28

Abstract

This paper presents the systematic approach to positively skewed shape of instantaneous unit hydrograph (IUH), that is one of the universal features of hydrologic response function. To this end an analytical expression of statistical moments for IUH is derived within the framework of geomorphologic instantaneous unit hydrograph (GIUH) theory and quantified according to the concept of hydrodynamic, geomorphologic and kinematic heterogeneity. There is a big scale difference between hillslope and channel flow path system. Although the former has the much smaller level of scale its variation coefficient tends to be higher and coefficient of skewness has the different trend than the latter. The shape of IUH is likely to be much more affected by kinematic heterogeneity rather than hydrodynamic heterogeneity and its combined effect with geomorphologic heterogeneity is the major cause of skewing hydrologic response function. Statistical features of hillslope and channel flow path can be transferred into hydrologic response function in the form of dimensionless statistics and their relative importance forms the general shape of hydrologic response function.

본 연구에서는 순간단위도의 보편적 특성 중 하나인 왜곡된 형상에 대하여 체계적인 접근을 시도하여 보았다. 이를 위하여 순간단위도의 통계모멘트에 대한 해석적 관계식을 지형학적 순간단위도 이론을 기반으로 유도하고 유역의 동수역학적 이질성, 지형학적 이질성 및 운동학적 이질성의 개념에 따라 정량화하여 수문학적 응답 함수를 왜곡시키는 원인에 접근해 보고자 하였다. 지표면 배수경로와 하천 배수경로 사이에는 큰 규모의 차가 존재하지만 전자는 후자에 비하여 작은 규모임에도 불구하고 오히려 큰 변동계수를 가지며 왜곡계수 역시 다른 경향을 나타냄을 볼 수 있었다. 순간단위도의 형상은 동수역학적 이질성보다는 운동학적 이질성에 지배를 받으며 특히 지형학적 이질성과 결합하여 수문학적 응답함수에 왜도를 발생시키는 주요 원인이 될 수 있음을 알 수 있었다. 지표면과 하천의 배수경로들이 갖는 통계특성은 무차원 통계량의 형태로 수문학적 응답함수에 전달되어 지는데 이들 사이의 상대적 중요도에 따라 수문학적 응답함수의 전반적 형상이 결정되는 것으로 판단할 수 있었다.

Keywords

References

  1. Botter, G., and Rinaldo, A. (2003). "Scale effect on geomorphologic and kinematic dispersion."Water Resources Research, Vol. 39, No. 10, pp. SWC 6-1- SWC 6-10.
  2. Choi, Y.J., Kim, J.C., and Jeong, D.K. (2010). "Development of Synthetic Unit Hydrograph for Estimation of Runoff in Ungauged Watershed." Journal of the Korean Society ofWater Quality, Vol. 26, No 3, pp. 532-539.
  3. Clark, C.O. (1945). "Storage and the unit hydrograph." Transactions of the American Society of Civil Engineers, Vol. 110, No. 1, pp. 1419-1446.
  4. Di Lazzaro, M. (2009). "Regional analysis of storm hydrographs in the rescaled width function framework." Journal of Hydrology, Vol. 378, pp. 352-365.
  5. D'odorico, P., and Rigon, R. (2003). "Hillslope and channel contributions to the hydrologic response." Water Resources Research, Vol. 39, No. 5, pp. SWC 1-1-SWC 1-9.
  6. Dooge, J.C. (1959). "A general theory of the unit hydrograph." Journal of Geophysical Research, Vol. 64, No. 2, pp. 241-256. https://doi.org/10.1029/JZ064i002p00241
  7. Gandolfi, C., Bischetti, G.B., and Whelan, M.J. (1999). "A simple triangular approximation of the area function for the calculation of network hydrological response." Hydrological Processes, Vol. 13, No. 17, pp. 2639-2653. https://doi.org/10.1002/(SICI)1099-1085(19991215)13:17<2639::AID-HYP839>3.0.CO;2-5
  8. Gupta, V.K., Waymire, E., and Wang, C.T. (1980). "A representation of an instantaneous unit hydrograph from geomorphology." Water Resources Research, Vol. 16, No. 5, pp. 855-862. https://doi.org/10.1029/WR016i005p00855
  9. Henderson, F.M. (1966). Open channel flow, Macmillan, New York.
  10. Horton, R.E. (1945). "Erosional development of streams and their drainage basins; hydrophysical approach to quantitative morphology." Geological Society of America Bulletin, Vol. 56, No. 3, pp. 275-370. https://doi.org/10.1130/0016-7606(1945)56[275:EDOSAT]2.0.CO;2
  11. Kim, J.C., Choi, Y.J., and Jeong, D.K. (2011). "Suggestion of Synthetic Unit Hydrograph Method considering Hydrodynamic Characteristic on the Basin." Journal of the Korean Society of Civil Engineers, Vol. 31, No. 1B, pp. 47-55.
  12. Kirshen, D.M., and Bras, R.L. (1983). "The linear channel and its effect on the geomorphologic IUH." Journal of Hydrology, Vol. 65, No. 1, pp. 175-208. https://doi.org/10.1016/0022-1694(83)90216-0
  13. Lee, K.T., and Chang, C.H. (2005). "Incorporating subsurface-flow mechanism into geomorphology- based IUH modeling." Journal of Hydrology, Vol. 311, No. 1, pp. 91-105. https://doi.org/10.1016/j.jhydrol.2005.01.008
  14. Mehlhorn, J., Armbruster, F., Uhlenbrook, S., and Leibundgut, C. (1998). "Determination of the geomorphological instantaneous unit hydrograph using tracer experiments in a head water basin." IAHS Publications-Series of Proceedings and Reports-Intern Assoc Hydrological Sciences, Vol. 248, pp. 327-336.
  15. Mesa, O.J., and Mifflin, E R. (1986). "On the relative role of hillslope and network geometry in hydrologic response." Scale Problems in Hydrology, Vol. 6, pp. 1-17. https://doi.org/10.1007/978-94-009-4678-1_1
  16. Nash, J.E. (1957). "The form of the instantaneous unit hydrograph." IAHS Assemblee Generale de Toronto, Vol. 3, pp. 114-121.
  17. Rinaldo, A., Rigon, R., and Marani, M. (1991). "Geomorphological dispersion." Water Resources Research, Vol. 27, No. 4, pp. 513-525. https://doi.org/10.1029/90WR02501
  18. Rinaldo, A., Vogel, G.K., Rigon, R., and Rodriguez-Iturbe, I. (1995). "Can one gauge the shape of a basin?." Water Resources Research, Vol. 31, No. 4, pp. 1119-1127. https://doi.org/10.1029/94WR03290
  19. Rodrigueze-Iturbe, I., and Valdes, J.B. (1979). "The geomorphologic structure of hydrologic response." Water Resources Research, Vol. 15, No. 6, pp. 1409- 1420. https://doi.org/10.1029/WR015i006p01409
  20. Rosso, R. (1984). "Nash model relation to Horton order ratios." Water Resources Research, Vol. 20, No. 7, pp. 914-920. https://doi.org/10.1029/WR020i007p00914
  21. Saco, P.M., and Kumar, P. (2004). "Kinematic dispersion effects of hillslope velocities." Water Resources Research, Vol. 40, No. 1, pp. 1-12.
  22. Sherman, L.K. (1932) "The relation of hydrographs of runoff to size and character of drainage-basins." Transactions, American Geophysical Union, Vol. 13, pp. 332-339. https://doi.org/10.1029/TR013i001p00332
  23. Snell, J., Sivapalan, M., and Bates, B. (2004). "Nonlinear kinematic dispersion in channel network response and scale effects: application of the meta-channel concept." Advances in Water Resources, Vol. 27, No. 2, pp. 141-154. https://doi.org/10.1016/j.advwatres.2003.11.003
  24. Snyder, F.F. (1939). "A conception of runoff-phenomena." Transactions, American Geophysical Union, Vol. 20, pp. 725-738. https://doi.org/10.1029/TR020i004p00725
  25. Van der Tak, L.D., and Bras, R.L. (1990). "Incorporating hillslope effects into the geomorphologic instantaneous unit hydrograph." Water Resources Research, Vol. 26, No. 10, pp. 2393-2400. https://doi.org/10.1029/WR026i010p02393