DOI QR코드

DOI QR Code

Estimation of Water Quality using Landsat 8 Images for Geum-river, Korea

Landsat 8 이미지영상을 이용한 영양염류농도 추정; 금강을 대상으로

  • Lim, Jisang (Dept. of Water Resources, Graduate School of Water Resources, Sungkyunkwan Univ.) ;
  • Baik, Jongjin (Dept. of Civil, Architectural and Environmental System Engineering, Sungkyunkwan Univ.) ;
  • Kim, Hyunglok (Dept. of Water Resources, Graduate School of Water Resources, Sungkyunkwan Univ.) ;
  • Choi, Minha (Dept. of Water Resources, Graduate School of Water Resources, Sungkyunkwan Univ.)
  • 임지상 (성균관대학교 수자원전문대학원 수자원학과) ;
  • 백종진 (성균관대학교 건설환경시스템공학과) ;
  • 김형록 (성균관대학교 수자원전문대학원 수자원학과) ;
  • 최민하 (성균관대학교 수자원전문대학원 수자원학과)
  • Received : 2014.12.02
  • Accepted : 2015.01.02
  • Published : 2015.02.28

Abstract

In this study, the water quality parameters of Geum-river were estimated using Landsat 8 satellite image data which had launched in March 2013. The goal of this research is to predict HAB and to monitor spatial pattern of total nitrogen (TN) and total phosphorus (TP) because both TN and TP are the dominant factors of the growth of harmful algal blooms (HABs). To investigate the relationship between satellite band reflectance and in situ measurement value, Pearson' correlation coefficient analysis was used. The band2, 3, 4 and 5 reflectance values among 11 bands of Landsat 8 were used which was highly associated with detecting TN and TP. The 20 in situ data set with satellite's overpass time were identified. TN showed positive relation with band 2 (0.48), band3 (0.62), band4 (0.57) at a significance level of p<0.05. TP also showed high correlation for band2 (0.59), band3 (0.59), band4 (0.58) at a significance level of p<0.01. The optimal regression equation models were constructed for TN and TP based on multiple regression equations. The estimated concentration based on derived regression equations of TN and TP were compared with in situ measurement data. Finally, the spatial pattern of the two parameters was able be monitored through mapping on November 12, 2013 and April 21, 2014.

2013년 3월에 발사된 Landsat 8 인공위성의 이미지데이터를 이용하여 금강유역을 대상으로 수질인자에 대한 평가를 수행하였다. 본 연구의 목적은 다양한 수질인자 중 녹조에 직접적인 영향을 미치는 총질소와 총인의 농도를 추정함으로써 궁극적으로 수생태계에 악영향을 미치는 녹조의 발생을 모니터링 하는 것이다. 현장실측데이터와 인공위성 데이터간의 상관관계를 규명하기 위하여 Pearson' 상관계수를 이용하여 그 관계를 파악하였다. Landsat 8이 촬영되는 시기를 포함하는 총 20개의 현장실측 데이터가 수집되었으며 Landsat 8의 11개의 밴드중, 밴드2, 3, 4의 반사도 값이 총인과 총질소를 탐지하는데 있어서 가장 상관성 높은 것으로 나타났다. 총질소는 유의수준 0.05에서 밴드2(0.48), 3(0.62), 4(0.57)과 높은 양의 상관관계를 보였으며, 총인의 경우, 유의수준 0.01에서 밴드2(0.59), 3(0.59), 4(0.58)로 높은 양의 상관관계를 나타냈다. 5번 밴드는 유의수준을 벗어남으로써 두 수질인자를 탐지하는데 상관성이 떨어지는 것으로 나타났다. 상관성이 높았던 밴드간의 조합을 통해서 총질소와 총인에 대한 각각의 최적 회귀식이 다중 회귀식을 근거로 구축되었다. 유도된 회귀식으로 계산된 총질소와 총인의 농도값은 통계기법인 Bias와RMSE를 이용하여 현장실측데이터들과 비교 검증되었다. 최종적으로, 2014년 4월 21과 2013년 11월 12일에 대한 맵핑을 수행함으로써 총질소와 총인의 공간적인 분포를 시각적으로 확인할 수 있었다.

Keywords

References

  1. Bilge, F., Yazici, B., Dogeroglu, T., and Ayday, C. (2003). "Statistical evaluation of remotely sensed data for water quality monitoring." International Journal of Remote Sensing, Vol. 24, No. 24, pp. 5317-5326. https://doi.org/10.1080/0143116031000156828
  2. Bolgrien, D.W., Granin, N.G., and Levin, L. (1995). "Surface temperature dynamics of Lake Baikal observed from AVHRR images." Photogrammetric Engineering and Remote Sensing, Vol. 61, No. 2, pp. 211-216.
  3. Chacon-Torres, A., Ross, L., Beveridge, M., and Watson, A. (1992). "The application of SPOT multispectral imagery for the assessment of water quality in Lake Patzcuaro, Mexico." International Jounal of Remote Sensing, Vol. 13, No. 4, pp. 587-603. https://doi.org/10.1080/01431169208904139
  4. Chavez, Pat S. (1996). "Image-based atmospheric corrections-revisited and improved." Photogrammetric Engineering and Remote Sensing, Vol. 62, No. 9, pp. 1025-1035.
  5. Chi, J.H. (2013). "Validation of the Radiometric Characteristics of Landsat 8 (LDCM) OLI Sensor using Band Aggregation Technique of EO-1 Hyperion Hyperspectral Imagery." Korean Journal of Remote Sensing, Vol. 29, No. 4, pp, 399-406. https://doi.org/10.7780/kjrs.2013.29.4.5
  6. Dekker, A., Zamurovic-Nenad, Z., Hoogenboom, H., and Peters, S. (1996) "Remote sensing, ecological water quality modelling and in situ measurements: a case study in shallow lakes." Hydrological Science Journal, Vol. 41, No. 4, pp. 531-547. https://doi.org/10.1080/02626669609491524
  7. Dekker, A.G., Vos, R., and Peters, S. (2002). "Analytical algorithms for lake water TSM estimation for retrospective analyses of TM and SPOT sensor data." International Journal of Remote Sensing, Vol. 23, No. 1 pp. 15-35.
  8. Giardino, C., Pepe, M., Brivio, P.A., Ghezzi, P., and Zilioli, E. (2001) "Detecting chlorophyll, Secchi disk depth and surface temperature in a sub-alpine lake using Landsat imagery." Science of Total Environment, Vol. 268, No. 1, pp, 19-29. https://doi.org/10.1016/S0048-9697(00)00692-6
  9. Kim, T.G., Kim, K.E., Cho, G.S., and Kim, H.G. (1996). "Monitoring of Lake Water Quality using Landsat TM Imagery Data." Journal of the Korean society for geospatial Information System, Vol. 4, No. 2, pp. 23-33.
  10. Kim, T.W., Shin H.S., and Seo, Y.C. (2014). "Airborne Hyperspectral Imagery availability to estimate inland water quality parameter." Korean Journal of Remote Sensing, Vol. 30, No. 1, pp. 61-73. https://doi.org/10.7780/kjrs.2014.30.1.6
  11. Lillesand, T.M., Johnson, W.L., Deuell, R.L., Lindstrom, O.M., and Meisner, D.E. (1983). "Use of Landsat data to predict the trophic state of Minnesota lakes." Photogrammetric Engineering and Remote Sensing, Vol. 49, No. 2, pp. 219-229.
  12. Matthews, M.W., Bernard, S., andWinter, K. (2010). "Remote sensing of cyanobacteria-dominant algal blooms and water quality parameters in Zeekoevlei, a small ypertrophic lake, using MERIS." Remote Sensing of Environment, Vol. 114, No. 9, pp 2070-2087. https://doi.org/10.1016/j.rse.2010.04.013
  13. Nam, G.S., Song, Y.H., Lee, E.H., Hong, D.B., and Han, M.S. (2011). "Property of Water Environment and Evaluation of Zooplankton as Predators for the Control of Algal Bloom in the Agricultural Reservoir." Korean National Committee on Irrigation and Drainage, Vol. 18, No. 1, pp. 33-43
  14. Nas, B., Ekercin, S., Karabork, H., Berktay, A., and Mulla, D.J. (2010). "An application of Landsat-5TM image data for water quality mapping in Lake Beysehir,Turkey." Water Air and Soil Pollution, Vol. 212, No. 1-4, pp. 183-197. https://doi.org/10.1007/s11270-010-0331-2
  15. Park, J.H., Lee, G.S., Yang, J.S., and Kim, S.W. (2012). "A Hydrometeorological Time Series Analysis of Geum River Watershed with GIS Data Considering Climate Change." Journal of Korea Spatial Information, Vol. 20, No. 3, pp. 39-50. https://doi.org/10.12672/ksis.2012.20.3.039
  16. Park, S.H., Lee, M.J., and Jung, H.S. (2012). "Analysis on the snow cover variations at Mt. Kilimanjaro using Landsat satellite images." Korean Journal of Remote Sensing, Vol. 28, No. 4, pp. 409-420 https://doi.org/10.7780/kjrs.2012.28.4.5
  17. Song, K., Wang, Z., Blackwell, J., Zhang, B., Li, F., Zhang, Y., and Jiang, G. (2011). "Water quality monitoring using Landsat Themate Mapper data with empirical algorithms in Chagan Lake." Chinese Journal of Applied Remote Sensing, Vol. 5, No. 1, pp. 053506-053516, doi:10.1117/1.3559497.
  18. Sudheer, K., Chaubey, I., and Garg, V. (2006). "Lake water quality assessment from Landsat thematic mapper data using neural network: an approach to optimal band combination selection1." Journal of American Water Resource Association. Vol. 42, No. 6, pp. 1683-1695. https://doi.org/10.1111/j.1752-1688.2006.tb06029.x
  19. Wang, F., Han, L., Kung, H.T., and Van Arsdale, R.B. (2006). "Applications of Landsat-5 TM imagery in assessing and mapping water quality in Reelfoot Lake, Tennessee." International Journal of Remote Sensing, Vol. 27, No. 23, pp. 5269-5283. https://doi.org/10.1080/01431160500191704
  20. Wu, C., Wu, J., Qi, J., Zhang, L., Huang, H., Lou, L., and Chen, Y. (2010). "Empirical estimation of total phosphorus concentration in the mainstream of the Qiantang River in China using Landsat TM data." International Journal of Remote Sensing, Vol. 31, No. 9, pp. 2309-2324. https://doi.org/10.1080/01431160902973873