DOI QR코드

DOI QR Code

Raloxifene Induces Autophagy-Dependent Cell Death in Breast Cancer Cells via the Activation of AMP-Activated Protein Kinase

  • Kim, Dong Eun (Institute for Innovative Cancer Research, University of Ulsan College of Medicine, Asan Medical Center) ;
  • Kim, Yunha (Institute for Innovative Cancer Research, University of Ulsan College of Medicine, Asan Medical Center) ;
  • Cho, Dong-Hyung (Graduate School of East-West Medical Science, Kyung Hee University) ;
  • Jeong, Seong-Yun (Institute for Innovative Cancer Research, University of Ulsan College of Medicine, Asan Medical Center) ;
  • Kim, Sung-Bae (Department of Oncology, University of Ulsan College of Medicine, Asan Medical Center) ;
  • Suh, Nayoung (Asan Institute for Life Sciences, University of Ulsan College of Medicine, Asan Medical Center) ;
  • Lee, Jung Shin (Institute for Innovative Cancer Research, University of Ulsan College of Medicine, Asan Medical Center) ;
  • Choi, Eun Kyung (Institute for Innovative Cancer Research, University of Ulsan College of Medicine, Asan Medical Center) ;
  • Koh, Jae-Young (Neural Injury Research Center and Department of Neurology, Asan Medical Center) ;
  • Hwang, Jung Jin (Institute for Innovative Cancer Research, University of Ulsan College of Medicine, Asan Medical Center) ;
  • Kim, Choung-Soo (Institute for Innovative Cancer Research, University of Ulsan College of Medicine, Asan Medical Center)
  • 투고 : 2014.07.09
  • 심사 : 2014.11.10
  • 발행 : 2015.02.28

초록

Raloxifene is a selective estrogen receptor modulator (SERM) that binds to the estrogen receptor (ER), and exhibits potent anti-tumor and autophagy-inducing effects in breast cancer cells. However, the mechanism of raloxifene-induced cell death and autophagy is not well-established. So, we analyzed mechanism underlying death and autophagy induced by raloxifene in MCF-7 breast cancer cells. Treatment with raloxifene significantly induced death in MCF-7 cells. Raloxifene accumulated GFP-LC3 puncta and increased the level of autophagic marker proteins, such as LC3-II, BECN1, and ATG12-ATG5 conjugates, indicating activated autophagy. Raloxifene also increased autophagic flux indicators, the cleavage of GFP from GFP-LC3 and only red fluorescence-positive puncta in mRFP-GFP-LC3-expressing cells. An autophagy inhibitor, 3-methyladenine (3-MA), suppressed the level of LC3-II and blocked the formation of GFP-LC3 puncta. Moreover, siRNA targeting BECN1 markedly reversed cell death and the level of LC3-II increased by raloxifene. Besides, raloxifene-induced cell death was not related to cleavage of caspases-7, -9, and PARP. These results indicate that raloxifene activates autophagy-dependent cell death but not apoptosis. Interestingly, raloxifene decreased the level of intracellular adenosine triphosphate (ATP) and activated the AMPK/ULK1 pathway. However it was not suppressed the AKT/mTOR pathway. Addition of ATP decreased the phosphorylation of AMPK as well as the accumulation of LC3-II, finally attenuating raloxifene-induced cell death. Our current study demonstrates that raloxifene induces autophagy via the activation of AMPK by sensing decreases in ATP, and that the overactivation of autophagy promotes cell death and thereby mediates the anti-cancer effects of raloxifene in breast cancer cells.

키워드

참고문헌

  1. Alers, S., Loffler, A.S., Wesselborg, S., and Stork, B. (2012). Role of AMPK-mTOR-Ulk1/2 in the regulation of autophagy: cross talk, shortcuts, and feedbacks. Mol. Cell. Biol. 32, 2-11. https://doi.org/10.1128/MCB.06159-11
  2. Balgi, A.D., Fonseca, B.D., Donohue, E., Tsang, T.C., Lajoie, P., Proud, C.G., Nabi, I.R., and Roberge, M. (2009). Screen for chemical modulators of autophagy reveals novel therapeutic inhibitors of mTORC1 signaling. PLoS One 4, e7124. https://doi.org/10.1371/journal.pone.0007124
  3. Bursch, W., Ellinger, A., Kienzl, H., Torok, L., Pandey, S., Sikorska, M., Walker, R., and Hermann, R.S. (1996). Active cell death induced by the anti-estrogens tamoxifen and ICI 164 384 in human mammary carcinoma cells (MCF-7) in culture: the role of autophagy. Carcinogenesis 17, 1595-1607. https://doi.org/10.1093/carcin/17.8.1595
  4. de Medina, P., Payre, B., Boubekeur, N., Bertrand-Michel, J., Terce, F., Silvente-Poirot, S., and Poirot, M. (2009). Ligands of the antiestrogen- binding site induce active cell death and autophagy in human breast cancer cells through the modulation of cholesterol metabolism. Cell Death Differ. 16, 1372-1384. https://doi.org/10.1038/cdd.2009.62
  5. Deli, T., and Csernoch, L. (2008). Extracellular ATP and cancer: an overview with special reference to P2 purinergic receptors. Pathol. Oncol. Res. 14, 219-231. https://doi.org/10.1007/s12253-008-9071-7
  6. Dixon, C.J., Bowler, W.B., Fleetwood, P., Ginty, A.F., Gallagher, J.A., and Carron, J.A. (1997). Extracellular nucleotides stimulate proliferation in MCF-7 breast cancer cells via P2-purinoceptors. Br. J. Cancer 75, 34-39. https://doi.org/10.1038/bjc.1997.6
  7. Dorsey, F.C., Steeves, M.A., Prater, S.M., Schroter, T., and Cleveland, J.L. (2009). Monitoring the autophagy pathway in cancer. Methods Enzymol. 453, 251-271. https://doi.org/10.1016/S0076-6879(08)04012-3
  8. Egan, D., Kim, J., Shaw, R.J., and Guan, K.L. (2011). The autophagy initiating kinase ULK1 is regulated via opposing phosphorylation by AMPK and mTOR. Autophagy 7, 643-644. https://doi.org/10.4161/auto.7.6.15123
  9. Eskelinen, E.L. (2008). New insights into the mechanisms of macroautophagy in mammalian cells. Int. Rev. Cell Mol. Biol. 266, 207-247. https://doi.org/10.1016/S1937-6448(07)66005-5
  10. Fabian, C.J., and Kimler, B.F. (2005). Selective estrogen-receptor modulators for primary prevention of breast cancer. J. Clin. Oncol. 23, 1644-1655. https://doi.org/10.1200/JCO.2005.11.005
  11. Fisher, B., Costantino, J.P., Wickerham, D.L., Redmond, C.K., Kavanah, M., Cronin, W.M., Vogel, V., Robidoux, A., Dimitrov, N., Atkins, J., et al. (1998). Tamoxifen for prevention of breast cancer: report of the national surgical adjuvant breast and bowel project P-1 study. J. Natl. Cancer Inst. 90, 1371-1388. https://doi.org/10.1093/jnci/90.18.1371
  12. Gizzo, S., Saccardi, C., Patrelli, T.S., Berretta, R., Capobianco, G., Di Gangi, S., Vacilotto, A., Bertocco, A., Noventa, M., Ancona, E., et al. (2013). Update on raloxifene: mechanism of action, clinical efficacy, adverse effects, and contraindications. Obstet. Gynecol. Surv. 68, 467-481. https://doi.org/10.1097/OGX.0b013e31828baef9
  13. He, C., and Klionsky, D.J. (2009). Regulation mechanisms and signaling pathways of autophagy. Annu. Rev. Genet. 43, 67-93. https://doi.org/10.1146/annurev-genet-102808-114910
  14. Hippert, M.M., O'Toole, P.S., and Thorburn, A. (2006). Autophagy in cancer: good, bad, or both? Cancer Res. 66, 9349-9351. https://doi.org/10.1158/0008-5472.CAN-06-1597
  15. Hopfner, M., Lemmer, K., Jansen, A., Hanski, C., Riecken, E.O., Gavish, M., Mann, B., Buhr, H., Glassmeier, G., and Scherubl, H. (1998). Expression of functional P2-purinergic receptors in primary cultures of human colorectal carcinoma cells. Biochem. Biophys. Res. Commun. 251, 811-817. https://doi.org/10.1006/bbrc.1998.9555
  16. Hwang, J.J., Kim, H.N., Kim, J., Cho, D.H., Kim, M.J., Kim, Y.S., Kim, Y., Park, S.J., and Koh, J.Y. (2010). Zinc(II) ion mediates tamoxifen-induced autophagy and cell death in MCF-7 breast cancer cell line. Biometals 23, 997-1013. https://doi.org/10.1007/s10534-010-9346-9
  17. Jung, C.H., Ro, S.H., Cao, J., Otto, N.M., and Kim, D.H. (2010). mTOR regulation of autophagy. FEBS Lett. 584, 1287-1295. https://doi.org/10.1016/j.febslet.2010.01.017
  18. Kanzawa, T., Zhang, L., Xiao, L., Germano, I.M., Kondo, Y., and Kondo, S. (2005). Arsenic trioxide induces autophagic cell death in malignant glioma cells by upregulation of mitochondrial cell death protein BNIP3. Oncogene 24, 980-991. https://doi.org/10.1038/sj.onc.1208095
  19. Khan, J.A., Forouhar, F., Tao, X., and Tong, L. (2007). Nicotinamide adenine dinucleotide metabolism as an attractive target for drug discovery. Expert Opin. Ther. Targets 11, 695-705. https://doi.org/10.1517/14728222.11.5.695
  20. Kim, J., Kundu, M., Viollet, B., and Guan, K.L. (2011). AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat. Cell Biol. 13, 132-141. https://doi.org/10.1038/ncb2152
  21. Lee, J.W., Park, S., Takahashi, Y., and Wang, H.G. (2010). The association of AMPK with ULK1 regulates autophagy. PLoS One 5, e15394. https://doi.org/10.1371/journal.pone.0015394
  22. Levine, B. (2007). Cell biology: autophagy and cancer. Nature 446, 745-747. https://doi.org/10.1038/446745a
  23. Levine, B., and Kroemer, G. (2008). Autophagy in the pathogenesis of disease. Cell 132, 27-42. https://doi.org/10.1016/j.cell.2007.12.018
  24. Liang, X.H., Jackson, S., Seaman, M., Brown, K., Kempkes, B., Hibshoosh, H., and Levine, B. (1999). Induction of autophagy and inhibition of tumorigenesis by beclin 1. Nature 402, 672-676. https://doi.org/10.1038/45257
  25. Liu, Y.L., Yang, P.M., Shun, C.T., Wu, M.S., Weng, J.R., and Chen, C.C. (2010). Autophagy potentiates the anti-cancer effects of the histone deacetylase inhibitors in hepatocellular carcinoma. Autophagy 6, 1057-1065. https://doi.org/10.4161/auto.6.8.13365
  26. Maiuri, M.C., Zalckvar, E., Kimchi, A., and Kroemer, G. (2007). Selfeating and self-killing: crosstalk between autophagy and apoptosis. Nat. Rev. Mol. Cell Biol. 8, 741-752.
  27. Mizushima, N., Yoshimori, T., and Levine, B. (2010). Methods in mammalian autophagy research. Cell 140, 313-326. https://doi.org/10.1016/j.cell.2010.01.028
  28. Morselli, E., Galluzzi, L., Kepp, O., Vicencio, J.M., Criollo, A., Maiuri, M.C., and Kroemer, G. (2009). Anti- and pro-tumor functions of autophagy. Biochim. Biophys. Acta 1793, 1524-1532. https://doi.org/10.1016/j.bbamcr.2009.01.006
  29. Olivier, S., Close, P., Castermans, E., de Leval, L., Tabruyn, S., Chariot, A., Malaise, M., Merville, M.P., Bours, V., and Franchimont, N. (2006). Raloxifene-induced myeloma cell apoptosis: a study of nuclear factor-kappaB inhibition and gene expression signature. Mol. Pharmacol. 69, 1615-1623. https://doi.org/10.1124/mol.105.020479
  30. Powles, T. (2011). Prevention of breast cancer by newer SERMs in the future. Recent Results Cancer Res. 188, 141-145.
  31. Rossi, V., Bellastella, G., De Rosa, C., Abbondanza, C., Visconti, D., Maione, L., Chieffi, P., Della Ragione, F., Prezioso, D., De Bellis, A., et al. (2011). Raloxifene induces cell death and inhibits proliferation through multiple signaling pathways in prostate cancer cells expressing different levels of estrogen receptor alpha and beta. J. Cell. Physiol. 226, 1334-1339. https://doi.org/10.1002/jcp.22461
  32. Ryter, S.W., Cloonan, S.M., and Choi, A.M. (2013). Autophagy: a critical regulator of cellular metabolism and homeostasis. Mol. Cells 36, 7-16. https://doi.org/10.1007/s10059-013-0140-8
  33. Shibata, M.A., Morimoto, J., Shibata, E., Kurose, H., Akamatsu, K., Li, Z.L., Kusakabe, M., Ohmichi, M., and Otsuki, Y. (2010). Raloxifene inhibits tumor growth and lymph node metastasis in a xenograft model of metastatic mammary cancer. BMC Cancer 10, 566. https://doi.org/10.1186/1471-2407-10-566
  34. Takeuchi, H., Kondo, Y., Fujiwara, K., Kanzawa, T., Aoki, H., Mills, G.B., and Kondo, S. (2005). Synergistic augmentation of rapamycin- induced autophagy in malignant glioma cells by phosphatidylinositol 3-kinase/protein kinase B inhibitors. Cancer Res. 65, 3336-3346. https://doi.org/10.1158/0008-5472.CAN-04-3640
  35. Taurin, S., Allen, K.M., Scandlyn, M.J., and Rosengren, R.J. (2013). Raloxifene reduces triple-negative breast cancer tumor growth and decreases EGFR expression. Int. J. Oncol. 43, 785-792. https://doi.org/10.3892/ijo.2013.2012
  36. Wagstaff, S.C., Bowler, W.B., Gallagher, J.A., and Hipskind, R.A. (2000). Extracellular ATP activates multiple signalling pathways and potentiates growth factor-induced c-fos gene expression in MCF-7 breast cancer cells. Carcinogenesis 21, 2175-2181. https://doi.org/10.1093/carcin/21.12.2175
  37. Wang, Q., Wang, L., Feng, Y.H., Li, X., Zeng, R., and Gorodeski, G.I. (2004). P2X7 receptor-mediated apoptosis of human cervical epithelial cells. Am. J. Physiol. Cell Physiol. 287, C1349-1358. https://doi.org/10.1152/ajpcell.00256.2004
  38. White, N., and Burnstock, G. (2006). P2 receptors and cancer. Trends Pharmacol. Sci. 27, 211-217. https://doi.org/10.1016/j.tips.2006.02.004
  39. Yang, Z., and Klionsky, D.J. (2010). Mammalian autophagy: core molecular machinery and signaling regulation. Curr. Opin. Cell Biol. 22, 124-131. https://doi.org/10.1016/j.ceb.2009.11.014

피인용 문헌

  1. Identification of Biomarkers for Breast Cancer Using Databases vol.21, pp.4, 2016, https://doi.org/10.15430/JCP.2016.21.4.235
  2. Human interstitial cellular model in therapeutics of heart valve calcification 2017, https://doi.org/10.1007/s00726-017-2432-3
  3. Breast cancer cell line MDA-MB-231 miRNA profile expression after BIK interference: BIK involvement in autophagy vol.37, pp.5, 2016, https://doi.org/10.1007/s13277-015-4494-8
  4. Effects of Raloxifene on the Proliferation and Apoptosis of Human Aortic Valve Interstitial Cells vol.2016, 2016, https://doi.org/10.1155/2016/5473204
  5. Autophagy Induced by Areca Nut Extract Contributes to Decreasing Cisplatin Toxicity in Oral Squamous Cell Carcinoma Cells: Roles of Reactive Oxygen Species/AMPK Signaling vol.18, pp.3, 2017, https://doi.org/10.3390/ijms18030524
  6. Inhibition of Autophagy by Chloroquine Enhances the Antitumor Efficacy of Sorafenib in Glioblastoma vol.36, pp.7, 2016, https://doi.org/10.1007/s10571-015-0318-z
  7. Hydrogen sulphide exacerbates acute pancreatitis by over-activating autophagyviaAMPK/mTOR pathway vol.20, pp.12, 2016, https://doi.org/10.1111/jcmm.12928
  8. Autophagy is essential for flavopiridol-induced cytotoxicity against MCF-7 breast cancer cells vol.16, pp.6, 2017, https://doi.org/10.3892/mmr.2017.7815
  9. Ormeloxifene-induced unfolded protein response contributes to autophagy-associated apoptosis via disruption of Akt/mTOR and activation of JNK vol.8, pp.1, 2018, https://doi.org/10.1038/s41598-018-20541-8
  10. How does estrogen work on autophagy? pp.1554-8635, 2018, https://doi.org/10.1080/15548627.2018.1520549
  11. The multifaceted role of autophagy in cancer and the microenvironment pp.01986325, 2019, https://doi.org/10.1002/med.21531
  12. AutophagySMDB: a curated database of small molecules that modulate protein targets regulating autophagy pp.1554-8635, 2019, https://doi.org/10.1080/15548627.2019.1571717
  13. Elevated CXCL1 increases hepatocellular carcinoma aggressiveness and is inhibited by miRNA-200a vol.7, pp.40, 2015, https://doi.org/10.18632/oncotarget.11350
  14. Drug Repurposing Screening Identifies Novel Compounds That Effectively Inhibit Toxoplasma gondii Growth vol.1, pp.2, 2015, https://doi.org/10.1128/msphere.00042-15
  15. Cancer Chemoprevention: What Have we Learned? vol.3, pp.6, 2017, https://doi.org/10.1007/s40495-017-0108-z
  16. Discovery of a Small-Molecule Bromodomain-Containing Protein 4 (BRD4) Inhibitor That Induces AMP-Activated Protein Kinase-Modulated Autophagy-Associated Cell Death in Breast Cancer vol.60, pp.24, 2015, https://doi.org/10.1021/acs.jmedchem.7b00275
  17. Multiplexed Proteome Dynamics Profiling Reveals Mechanisms Controlling Protein Homeostasis vol.173, pp.1, 2015, https://doi.org/10.1016/j.cell.2018.02.030
  18. LncRNA UCA1 attenuates autophagy-dependent cell death through blocking autophagic flux under arsenic stress vol.284, pp.None, 2015, https://doi.org/10.1016/j.toxlet.2017.12.009
  19. Application of the CRISPR/Cas9 System to Drug Resistance in Breast Cancer vol.5, pp.6, 2015, https://doi.org/10.1002/advs.201700964
  20. Adenine Inhibits the Growth of Colon Cancer Cells via AMP-Activated Protein Kinase Mediated Autophagy vol.2019, pp.None, 2015, https://doi.org/10.1155/2019/9151070
  21. Induction of AMPK activation by N , N’- diarylurea FND-4b decreases growth and increases apoptosis in triple negative and estrogen-receptor positive breast cancers vol.14, pp.3, 2019, https://doi.org/10.1371/journal.pone.0209392
  22. High-Throughput Image-Based Aggresome Quantification vol.25, pp.7, 2020, https://doi.org/10.1177/2472555220919708
  23. Autophagy-targeted therapy to modulate age-related diseases: Success, pitfalls, and new directions vol.2, pp.None, 2021, https://doi.org/10.1016/j.crphar.2021.100033
  24. Structural Characterization, Antimicrobial Activity and BSA/DNA Binding Affinity of New Silver(I) Complexes with Thianthrene and 1,8-Naphthyridine vol.26, pp.7, 2015, https://doi.org/10.3390/molecules26071871
  25. High-throughput screening for natural compound-based autophagy modulators reveals novel chemotherapeutic mode of action for arzanol vol.12, pp.6, 2015, https://doi.org/10.1038/s41419-021-03830-5
  26. Açai (Euterpe oleracea Mart.) Seed Extract Induces ROS Production and Cell Death in MCF-7 Breast Cancer Cell Line vol.26, pp.12, 2015, https://doi.org/10.3390/molecules26123546
  27. Lipidic Nano-Sized Emulsomes Potentiates the Cytotoxic and Apoptotic Effects of Raloxifene Hydrochloride in MCF-7 Human Breast Cancer Cells: Factorial Analysis and In Vitro Anti-Tumor Activity Assessm vol.13, pp.6, 2021, https://doi.org/10.3390/pharmaceutics13060783