DOI QR코드

DOI QR Code

Investigation of Transonic and Supersonic Flows over an Open Cavity Mounted on Curved Wall (I) - Steady Flow Characteristics -

곡면상에 설치된 열린 공동을 지나는 천음속/초음속 유동에 관한 연구 (I) - 정상 유동의 특성 -

  • Ye, A Ran (Dept. of Mechanical Engineering, Andong Nat'l Univ.) ;
  • Das, Rajarshi (Dept. of Mechanical Engineering, Andong Nat'l Univ.) ;
  • Kim, Huey Dong (Dept. of Mechanical Engineering, Andong Nat'l Univ.)
  • Received : 2014.08.26
  • Accepted : 2015.01.20
  • Published : 2015.03.01

Abstract

Investigations into cavity flows have been conducted for decades now, most of them being about zero-pressure-gradient flows entering a cavity on a straight wall. However, the flow over curved walls in real-life situations has not been fully investigated. As cavity flows on curved walls exert centrifugal force, these walls are likely to possess different features from straight walls. To verify this possibility, this study investigated cavity flows on curved walls. Using numerical method, the effect of two variables, namely, radius of curvature on a curved wall and inlet Mach number, were investigated for subsonic and supersonic cavity flows. The result demonstrates that the value of the peak pressure generated inside the cavity increases with the decrease in the radius of curvature on a curved wall or an increase in the inlet Mach number. The total pressure loss in the cavity also results in an increase in the cavity drag.

공동유동은 종래 많은 연구가 수행되었으나 대부분의 연구는 공동 상류의 압력구배가 없는 수평면 상에 위치한 공동 유동에 대한 연구가 수행되어 왔으며, 실제 공학적 응용에서 나타나는 곡면 벽상에 위치한 공동 유동에 대한 연구는 거의 수행되지 않고 있다. 일반적으로 곡면 벽상에 위치한 공동유동에는 원심력이 작용하여 종래의 공동 유동 연구결과와 상이한 유동특성을 가질 것으로 판단되나, 이러한 데이터는 지금까지 보고되지 않았다. 본 연구에서는 곡면 벽상에 설치한 공동 유동을 수치해석법으로 조사하여 곡면의 곡률반경 및 유동의 마하수가 천음속 및 초음속 공동유동의 특성에 미치는 영향을 조사하였다. 그 결과 곡면의 곡률반경이 작아질수록, 유동의 마하수가 증가할수록, 공동내부에서 발생하는 피크압력의 크기는 증가하였으며 공동으로 인한 전압력손실 증가한다는 것을 확인할 수 있다.

Keywords

Acknowledgement

Supported by : 한국연구재단

References

  1. Stallings, R. L. and Wilcox, F. J., 1987, "Experimental Cavity Pressure Distributions at Supersonic Speeds" NASA TP-2683.
  2. Plentovich, E. B., Stallings, R. L. and Tracy, M. B., 1993, "Experimental Cavity Pressure Measurements at Subsonic and Transonic Speeds," NASA Technical Paper 3358.
  3. Maureen, B. T. and Plentovich, E. B., 1997, "Cavity Unsteady-Pressure Measurements at Subsonic and Transonic Speeds," NASA TP 3669
  4. Zhang, X., 1995, "Compressible Cavity Flow Oscillation Due to Shear Layer Instabilities and Pressure Feedback," AIAA Journal, Vol. 33, No. 8, pp. 1404-1411. https://doi.org/10.2514/3.12845
  5. Zhang, X., Rona, A. and Edwards, J.A., 1998, "The Effect of Trailing Edge Geometry on Cavity Flow Oscillation Driven by a Supersonic Shear Layer," The Aeronautical Journal, Vol. 102, No. 1013, pp.129-136.
  6. Yang, D. G., Li, J. Q., Fan, Z. L. and Yao, D., 2010, "Aerodynamic Characteristics of Transonic and Supersonic Flow over Rectangular Cavities," Flow Turbulence Combust, Vol. 84, No. 4, pp. 639-652. https://doi.org/10.1007/s10494-010-9246-7
  7. Atvars, K., Knowles, K., Ritchie, S. A. and Lawson, N. J., 2009, "Experimental and Computational Investigation of an Open Transonic Cavity Flow," Proceedings of IMechE. Part G: Journal of Aerospace Engineering, Vol. 223, No. 4, pp. 357-368. https://doi.org/10.1243/09544100JAERO445
  8. Lee, Y. K., Kang, M. S., Kim, H. D. and Setoguchi, T., 2008, "Passive Control Techniques to Alleviate Supersonic Cavity Flow Oscillation," Journal of Propulsion and Power, Vol. 24, No. 4, pp. 697-703. https://doi.org/10.2514/1.30292
  9. Nayyar, P., 2005, "CFD Analysis of Transonic Turbulent Cavity Flows," PhD thesis, University of Glasgow.
  10. Murray, N., Sallstrom, E. and Ukeiley, L., 2009, "Properties of Subsonic Open Cavity Flow Fields," Physics of Fluids, Vol. 21, No. 9, pp. 095103-095119. https://doi.org/10.1063/1.3210772

Cited by

  1. A study on the cross section in pipe type orifice of suitable piston rod moving in gas spring elevation working vol.16, pp.11, 2015, https://doi.org/10.5762/KAIS.2015.16.11.7745
  2. A optimized structural design of piston on moving in gas spring elevation working vol.16, pp.12, 2015, https://doi.org/10.5762/KAIS.2015.16.12.8274
  3. Investigation of Transonic and Supersonic Flows over an Open Cavity Mounted on Curved Wall (II) - Unsteady Flow Characteristics - vol.39, pp.6, 2015, https://doi.org/10.3795/KSME-B.2015.39.6.477
  4. Numerical Analysis of the High-Subsonic Cavity Flows over a Curved Wall vol.20, pp.1, 2016, https://doi.org/10.6108/KSPE.2016.20.1.001
  5. A Study on the Pressure Oscillations in the High-Subsonic Cavity Flows over a Curved Wall vol.20, pp.5, 2016, https://doi.org/10.6108/KSPE.2016.20.5.077