DOI QR코드

DOI QR Code

Quantitative Analysis of GBCA Reaction by Mol Concentration Change on MRI Sequence

MRI sequence에 따른 GBCA 몰농도별 반응에 대한 정량적 분석

  • Jeong, Hyun Keun (Department of Medical Imaging of Engineering, The Graduate School of Bio-Medical Science, Korea University) ;
  • Jeong, Hyun Do (Korean Society for Cognitive & Biological Psychology, Department of Radiological Science, Eulji University) ;
  • Kim, Ho Chul (Korean Society for Cognitive & Biological Psychology, Department of Radiological Science, Eulji University)
  • 정현근 (고려대학교 의용과학대학원 의료영상공학과) ;
  • 정현도 (한국인지및생물심리학회, 을지대학교 보건과학대학 방사선학과) ;
  • 김호철 (한국인지및생물심리학회, 을지대학교 보건과학대학 방사선학과)
  • Received : 2014.12.24
  • Accepted : 2015.01.29
  • Published : 2015.02.25

Abstract

In this paper, we introduce how to change the reaction rate as mol concentration when we scan enhanced MRI with GBCA(Gadolinium Based Contrast Agent), Also show the changing patterns depending on diverse MRI sequences which are made by different physical principle. For this study, we made MRI phantom ourselves. We mixed 500 mmol Gadoteridol with Saline in each 28 different containers from 500 to 0 mmol. After that, MR phantom was scanned by physically different MRI sequences which are T1 SE, T2 FLAIR, T1 FLAIR, 3D FLASH, T1 3D SPACE and 3D SPCIR in 1.5T bore. The results were as follows : *T1 Spin echo's Total SI(Signal Intensity) was 15608.7, Max peak was 1352.6 in 1 mmol. *T2 FLAIR's Total SI was 9106.4, Max peak was 0.4 1721.6 in 1 mmol. *T1 FLAIR's Total SI was 20972.5, Max peak was 1604.9 in 1 mmol. *3D FLASH's Total SI was 20924.0, Max peak was 1425.7 in 40 mmol. *3D SPACE 1mm's Total SI was 6399.0, Max peak was 528.3 in 3 mmol. *3D SPACE 5mm's Total SI was 6276.5, Max peak was 514.6 in 2 mmol. *3D SPCIR's Total SI was 1778.8, Max peak was 383.8 in 0.4 mmol. In most sequences, High signal intensity was shown in diluted lower concentration rather than high concentration, And also graph's max peak and pattern had difference value according to the each different sequence. Through this paper which have quantitative result of GBCA's reaction rate depending on sequence, We expect that practical enhanced MR protocol can be performed in clinical field.

본 논문에서는 GBCA(Gadolinium Based Contrast Agent)를 이용한 MRI 검사 시 다양한 MR 시퀀스에 따른 GBCA 몰농도별 조영증강 변화를 알아보기 위해 자체 제작한 MR 팬텀을 사용하여 정량적으로 평가 분석하고자 하였다. MR 팬텀을 제작하기 위해 28개의 용기에 500 mmol Gadoteridol을 saline과 혼합하여 각각 500 부터 0 mmol 까지 몰농도를 서로 다르게 하였다. 제작된 MR phantom을 1.5T MRI 장비에서 물리학적 기전이 서로 다른 T1 SE, T2 FLAIR, T1 FLAIR, 3D FLASH, T1 3D SPACE, 3D SPCIR 시퀀스로 스캔하여 신호강도 변화를 측정 한 후 비교 분석 하였다. T1 Spin echo는 Total SI(Signal Intensity)가 15608.7, Max peak는 1 mmol에서 1352.6, T2 FLAIR는 Total SI가 9106.4, Max peak는 0.4 mmol에서 1721.6, T1 FLAIR에서는 Total SI가 20972.5, Max peak는 1 mmol에서 1604.9, 3D FLASH는 Total SI가 20924.0, Max peak는 40 mmol에서 1425.7, 3D SPACE 1mm는 Total SI가 6399.0, Max peak는 3 mmol에서 528.3, 3D SPACE 5mm는 Total SI가 6276.5, Max peak는 2 mmol에서 514.6, 3D SPCIR의 경우는 Total SI가 1778.8, Max peak는 0.4 mmol에서 383.8의 신호강도를 보였다. T1 SE를 포함한 대부분의 시퀀스에서 몰농도가 높았을 때 보다는 대체적으로 일정이상 희석이 이루어진 비교적 낮은 농도에서 높은 신호강도를 보였다. 또한 서로 다른 물리학적 기전의 다양한 MR시퀀스에서 GBCA의 조영증강 패턴 역시 모두 달랐다. 본 연구를 통해 얻어진 시퀀스에 따른 GBCA 농도별 반응에 대한 정량적 데이터를 통하여 실제 임상에서의 조영증강검사에 있어서 효율적인 MR검사 프로토콜에 활용할 수 있을 것으로 사료된다.

Keywords

References

  1. Y. Kanawaku, S. Someya, T. Kobayashi, K. Hirakawa, S. Shiotani, T. Fukunaga, Y. Ohno, S. Kawakami, and J. Kanetake, "High-resolution 3D-MRI of postmortem brain specimens fixed by formalin and gadoteridol", egMed(Tokyo) vol.16, no.4, pp.218-21, Jul, 2014.
  2. E. Hagberg, and K. Scheffler, "Effect of r(1) and r(2) relaxivity of gadolinium-based contrast agents on the T(1)-weighted MR signal at increasing magnetic field strengths", ContrastMediaMolImaging vol.8, no.6, pp. 456-65, Nov-Dec, 2013. https://doi.org/10.1002/cmmi.1565
  3. Z. Seidl, J. Vymazal, M. Mechl, M. Goyal, M. Herman, C. Colosimo, M. Pasowicz, R. Yeung, B. Paraniak-Gieszczyk, B. Yemen, N. Anzalone, A. Citterio, G. Schneider, S. Bastianello, and J. Ruscalleda, "Does higher gadolinium concentration play a role in the morphologic assessment of brain tumors? Results of a multicenter intraindividual crossover comparison of gadobutrol versus gadobenate dimeglumine (the MERIT Study)", AJNRAmJNeuroradiol, vol.33, no.6, pp.1050-8,Jun, 2012. https://doi.org/10.3174/ajnr.A3033
  4. H. S. Thomsen, S. K. Morcos, T. Almen, M. F. Bellin, M. Bertolotto, G. Bongartz, O. Clement, P. Leander, G. Heinz-Peer, P. Reimer, F. Stacul, A. van der Molen, J. A. Webb, and E. C. M. S. Committee, "Nephrogenic systemic fibrosis and gadolinium-based contrast media: updated ESUR Contrast Medium Safety Committee guidelines", EurRadiol, vol.23, no.2, pp.307-18, Feb, 2013. https://doi.org/10.1007/s00330-012-2597-9
  5. S. K. Morcos, "Nephrogenic systemic fibrosis following the administration of extracellular gadolinium based contrast agents: is the stability of the contrast agent molecule an important factor in the pathogenesis of this condition?", BrJRadiol,vol.80,no.950,pp.73-6, Feb, 2007. https://doi.org/10.1259/bjr/17111243
  6. F. G. Shellock, and A. Spinazzi, "MRI safety update 2008: part 1, MRI contrast agents and nephrogenic systemic fibrosis", AJRAm JRoentgenol, vol.191, no.4, pp.1129-39, Oct, 2008. https://doi.org/10.2214/AJR.08.1038.1
  7. A. Spinazzi, M. A. Kirchin, and G. Pirovano, "Nephrogenic systemic fibrosis: the need for accurate case reporting", JMagnResonImaging, vol.29, no.5, pp.1240; authorreply 1241, May, 2009.
  8. Min Hee Hong, M.D.1, Hyang Mo Koo, M.D.1, Junjeong Choi, M.D.2, Jung Ryun Ahn, M.D.1, Hong Jae Chon, M.D.1, Chan Kim, M.D.1, and Seung Tae Lee, M.D., Ph.D.1, "A case of nephrogenic systemic fibrosis after gadoliniumbased contrast agent injection" Departments of 1Internal Medicine and 2Pathology, Yonsei University College of Medicine, Seoul, Korea, vol.78, no.5, 2010
  9. Tae Hyoung Koo, M.D.1, Dong Hyun Lee, M.D.1, Hee Kyung Baek, M.D.1, Do Kyong Kim, M.D.1, Bo Kyung Kim, M.D.1, Suk Hee Hong, M.D.2, and Won Suk An, M.D.1, "A case of nephrogenic systemic fibrosis following gadolinium exposure in a peritoneal dialysis patient", Departments of 1Internal Medicine and 2Pathology, Dong-A University College of Medicine, Busan, Korea
  10. T. Kubota, K. Yamada, O. Kizu, T. Hirota, H. Ito, K. Ishihara, and T. Nishimura, "Relationship between contrast enhancement on fluid-attenuated inversion recovery MR sequences and signal intensity on T2-weighted MR images: visual evaluation of brain tumors", JMagnResonImaging, vol.21, no.6, pp.694-700, Jun, 2005.
  11. C. Zhu, U. Sadat, A. J. Patterson, Z. Teng, J. H. Gillard, and M. J. Graves, "3D high-resolution contrast enhanced MRI of carotid atheroma--a technical update", MagnResonImaging, vol.32, no.5, pp.594-7, Jun, 2014.
  12. S. J. Ahn, M. R. Yoo, S. H. Suh, S. K. Lee, K. S. Lee, E. J. Son, and T. S. Chung, "Gadolinium enhanced 3D proton density driven equilibrium MR imaging in the evaluation of cisternal tumor and associated structures: comparison with balanced fast-field-echo sequence", PLoSOne, vol.9, no.7, pp. e103215, 2014. https://doi.org/10.1371/journal.pone.0103215
  13. R. Jablonowski, D. Nordlund, M. Kanski, J. Ubachs, S. Koul, E. Heiberg, H. Engblom, D. Erlinge, H. Arheden, and M. Carlsson, "Infarct quantification using 3D inversion recovery and 2D phase sensitive inversion recovery; validation in patients and ex vivo", BMCCardiovascDisord, vol.13, pp.110, 2013.
  14. S. Kakite, S. Fujii, M. Kurosaki, Y. Kanasaki, E. Matsusue, T. Kaminou, and T. Ogawa, "Three-dimensional gradient echo versus spin echo sequence in contrast-enhanced imaging of the pituitary gland at 3T", EurJRadiol, vol.79, no.1, pp.108-12, Jul, 2011. https://doi.org/10.1016/j.ejrad.2009.12.036
  15. H. Fukuoka, T. Hirai, T. Okuda, Y. Shigematsu, A. Sasao, E. Kimura, T. Hirano, S. Yano, R. Murakami, and Y. Yamashita, "Comparison of the added value of contrast-enhanced 3D fluid-attenuated inversion recovery and magnetization-prepared rapid acquisition of gradient echo sequences in relation to conventional postcontrast T1-weighted images for the evaluation of leptomeningeal diseases at 3T", AJNRAmJNeuroradiol, vol.31, no.5, pp.868-73, May, 2010. https://doi.org/10.3174/ajnr.A1937
  16. S. G. Wetzel, G. Johnson, A. G. Tan, S. Cha, E. A. Knopp, V. S. Lee, D. Thomasson, and N. M. Rofsky, "Three-dimensional, T1-weighted gradient-echo imaging of the brain with a volumetric interpolated examination", AJNRAm JNeuroradiol, vol.23, no.6, pp.995-1002, Jun-Jul, 2002.
  17. M. J. Sharafuddin, A. H. Stolpen, S. Sun, C. R. Leusner, A. A. Safvi, J. J. Hoballah, W. J. Sharp, and J. D. Corson, "High-resolution multiphase contrast-enhanced three-dimensional MR angiography compared with two-dimensional time-of-flight MR angiography for the identification of pedal vessels," JVascInterv Radiol, vol.13, no.7, pp.695-702, Jul, 2002. https://doi.org/10.1016/S1051-0443(07)61846-6
  18. B. K. Kang, M.-O. Kim, T. Hong, and D.-H. Kim, "Facial Muscles 3D Modeling using Ultra-short Echo-time (UTE) Magnetic Resonance Imaging (MRI).pdf," IEIE, pp.4, July, 2013.
  19. M. Woo Kyung Moon, "MR Contrast Agents and Molecular maging", DepartmentofRadiology, College of Medicine, Seoul National University, 2004.

Cited by

  1. Gadoteridol's Signal Change according to TR, TE Parameters in T1 Image vol.52, pp.9, 2015, https://doi.org/10.5573/ieie.2015.52.9.117
  2. Comparative Analysis of Quantitative Signal Intensity between 1.0 mol and 0.5 mol MR Contrast Agent vol.52, pp.12, 2015, https://doi.org/10.5573/ieie.2015.52.12.134
  3. Optimization of Flip Angle at Head & Neck MR Angiography using Gadoteridol vol.53, pp.3, 2016, https://doi.org/10.5573/ieie.2016.53.3.151
  4. Signal Change of Iodinated Contrast Agents in MR Imaging vol.53, pp.12, 2016, https://doi.org/10.5573/ieie.2016.53.12.131
  5. 9.4T MRI FLASH Sequence에서 마우스의 뇌 조영증강 검사를 위한 적정 Echo phase vol.54, pp.7, 2017, https://doi.org/10.5573/ieie.2017.54.7.115