DOI QR코드

DOI QR Code

Effect of laser shock peening and cold expansion on fatigue performance of open hole samples

  • Rubio-Gonzalez, Carlos (Centro de Ingenieria y Desarrollo Industrial) ;
  • Gomez-Rosas, G. (Universidad de Guadalajara) ;
  • Ruiz, R. (Instituto Tecnologico de Morelia) ;
  • Nait, M. (Laboratoire de Mecanique de Lille) ;
  • Amrouche, A. (Laboratoire de Genie Civil et Geo-Environnement LGCgE)
  • 투고 : 2014.05.04
  • 심사 : 2014.10.21
  • 발행 : 2015.03.10

초록

Mechanical fastening is still one of the main methods used for joining components. Different techniques have been applied to reduce the effect of stress concentration of notches like fastener holes. In this work we evaluate the feasibility of combining laser shock peening (LSP) and cold expansion to improve fatigue crack initiation and propagation of open hole specimens made of 6061-T6 aluminum alloy. LSP is a new and competitive technique for strengthening metals, and like cold expansion, induces a compressive residual stress field that improves fatigue, wear and corrosion resistance. For LSP treatment, a Q-switched Nd:YAG laser with infrared radiation was used. Residual stress distribution as a function of depth was determined by the contour method. Compact tension specimens with a hole at the notch tip were subjected to LSP process and cold expansion and then tested under cyclic loading with R=0.1 generating fatigue cracks on the hole surface. Fatigue crack initiation and growth is analyzed and associated with the residual stress distribution generated by both treatments. It is observed that both methods are complementary; cold expansion increases fatigue crack initiation life, while LSP reduces fatigue crack growth rate.

키워드

참고문헌

  1. Aid, A., Semari, Z. and Benguediab, M. (2014), "Cold expansion effect on the fatigue crack growth of Al6082: numerical investigation", Struct. Eng. Mech., 49 (2), 225-235. https://doi.org/10.12989/sem.2014.49.2.225
  2. Amrouche, A., Mesmacque, G., Garcia, S. and Talha, A. (2003), "Cold expansion effect on the initiation and the propagation of the fatigue crack", Int. J. Fatig., 25, 949-54. https://doi.org/10.1016/S0142-1123(03)00127-0
  3. Anderson, T. L. (1995), Fracture Mechanics, Fundamentals and Applications, CRC Press, New York.
  4. ASTM (2002), Annual book of ASTM Standards, v.03.01 No. E647-00, Standard Test Method for Measurement of Fatigue Crack Growth Rates.
  5. Chakherlou, T.N. and Vogwell, J. (2003), "The effect of cold expansion on improving the fatigue life of fastener holes", Eng. Fail. Anal., 10, 13-24. https://doi.org/10.1016/S1350-6307(02)00028-6
  6. Chu, J.P., Rigsbee, J.M., Banas, G. and Elayed-Ali, H.E. (1999), "Laser-shock processing effects on surface microstructure and mechanical properties of low carbon steel", Mater. Sci. Eng. A, 260(1-2), 260-268. https://doi.org/10.1016/S0921-5093(98)00889-2
  7. Cuellar, S.D., Hill, M.R. and DeWald, A.T. (2012), "Rankin J. E., Residual stress and fatigue life in laser shock peened open hole samples", Int. J. Fatig., 44, 8-13. https://doi.org/10.1016/j.ijfatigue.2012.06.011
  8. Ding, K. and Ye, L. (2006), "Simulation of multiple laser shock peening of a 35CD4 steel alloy", J. Mater. Proc. Tech., 178, 162-169. https://doi.org/10.1016/j.jmatprotec.2006.03.170
  9. Ghfiri, R., Amrouche, A., Imad, A. and Mesmacque, G. (2000), "Fatigue life estimation after crack repair in 6005 A-T6 aluminium alloy using the cold expansion hole technique", Fatig. Fract. Eng. Mater. Struct., 23, 911-916. https://doi.org/10.1046/j.1460-2695.2000.00356.x
  10. Hatamleh, O. (2009), "A comprehensive investigation on the effects of laser and shot peening on fatigue crack growth in friction stir welded AA 2195 joints", Int. J. Fatig., 31, 974-988. https://doi.org/10.1016/j.ijfatigue.2008.03.029
  11. Hatamleh, O., Hill, M., Forth, S. and Garcia, D. (2009), "Fatigue crack growth performance of peened friction stir welded 2195 aluminum alloy joints at elevated and cryogenic temperatures", Mat. Sci. Eng. A, 519 (1-2), 61-69 https://doi.org/10.1016/j.msea.2009.04.049
  12. Hatamleh, O., Lyons, J. and Forman, R. (2007), "Laser and shot peening effects on fatigue crack growth in friction stir welded 7075-T7351 aluminum alloy joints", Int. J. Fatig., 29(3), 421-434. https://doi.org/10.1016/j.ijfatigue.2006.05.007
  13. Hong, Z. and Chengye, Y. (1998), "Laser shock processing of 2024-T62 aluminum alloy", Mater. Sci. Eng. A, 257, 322-327. https://doi.org/10.1016/S0921-5093(98)00793-X
  14. Huang, H.F., Yan, H. and Tao, C.H. (1998), "Probabilistic analysis of equivalent initial defects sizes of two kinds of materials", J. Mech. Strength, 20 (3), 237-239.
  15. Ivetic, G. (2011), "Three-dimensional FEM analysis of laser shock peening of aluminium alloy 2024-T351 thin sheets", Surf. Eng., 27, 445-453. https://doi.org/10.1179/026708409X12490360425846
  16. Ivetic, G., Meneghin, I. and Troiani, E. (2011), "Numerical analysis of laser shock peening as a process for generation of compressive residual stresses in open hole specimens", Mater. Sci. Forum, 681, 267-272.
  17. Ivetic, G., Meneghin, I., Troiani, E., Molinari, G., Ocana, J., Morales, M., Porro, J., Lanciotti, A., Ristori, V., Polese, C., Plaisier, J. and Lausi, A. (2012), "Fatigue in laser shock peened open-hole thin aluminium specimens", Mater. Sci. Eng. A, 534, 573-579. https://doi.org/10.1016/j.msea.2011.12.010
  18. Lacarac, V., Smith, D.J., Pavier, M.J. and Priest, M. (2000), "Fatigue crack growth from plain and cold expanded holes in aluminium alloys", Int. J. Fatig., 22, 189-203. https://doi.org/10.1016/S0142-1123(99)00126-7
  19. Lavender, C.A., Honga, S.T., Smith, M.T., Johnson, R.T. and Lahrman, D. (2008), "The effect of laser shock peening on the life and failure mode of a cold pilger die", J. Mater. Proc. Tech., 204, 486-491. https://doi.org/10.1016/j.jmatprotec.2008.02.002
  20. Liu, J., Shao, X.J., Liu, Y.S. and Yue, Z.F. (2008), "Effect of cold expansion on fatigue performance of open holes", Mater. Sci. Eng. A, 477, 271-276 https://doi.org/10.1016/j.msea.2007.05.034
  21. Minguez, J.M. and Vogwell, J. (2006), "Fatigue life of an aerospace aluminium alloy subjected to cold expansion and a cyclic temperature regime", Eng. Fail. Anal., 13, 997-1004. https://doi.org/10.1016/j.engfailanal.2005.04.005
  22. Ocana, J.L., Morales, M., Molpeceres, C. and Torres, J. (2004), "Numerical simulation of surface deformation and residual stresses fields in laser shock processing experiments", Appl. Surf. Sci., 238, 242-248. https://doi.org/10.1016/j.apsusc.2004.05.232
  23. Papanikos, P. and Meguid, S.A. (1999), "Elasto-plastic finite-element analysis of the cold expansion of adjacent fastener holes", J. Mater. Proc. Tech., 92-93, 424-428. https://doi.org/10.1016/S0924-0136(99)00154-5
  24. Peyre, P. and Fabbro, R. (1995), "Laser shock processing: a review of the physics and applications", Optic. Quant. Electron., 27, 1213-1229.
  25. Prime, M.B. (2001), "Cross sectional mapping of stresses by measuring the contour after a cut", J. Eng. Mater. Technol., 123, 162-168. https://doi.org/10.1115/1.1345526
  26. Rankin, J.E., Hill, M.R. and Hackel, L.A. (2003), "The effects of process variations on residual stress in laser peened 7049 T73 aluminum alloy", Mater. Sci. Eng. A, 349, 279-291. https://doi.org/10.1016/S0921-5093(02)00811-0
  27. Rubio-Gonzalez, C., Felix-Martinez, C., Gomez-Rosas, G., Ocana, J.L., Morales, M. and Porro, J. (2011), "Effect of laser shock processing on fatigue crack growth of duplex stainless steel", Mater. Sci. Eng. A, 528, 914-919. https://doi.org/10.1016/j.msea.2010.10.020
  28. Rubio-González, C., Gomez-Rosas, G., Ocaña, J.L, Molpeceres, C., Banderas, A., Porro, J. and Morales, M. (2006), "Effect of an absorbent overlay on the residual stress field induced by laser shock processing on aluminum samples", Appl. Surf. Sci., 252, 6201-6205. https://doi.org/10.1016/j.apsusc.2005.08.062
  29. Rubio-Gonzalez, C., Ocana, J.L., Gomez-Rosas, G., Molpeceres, C., Paredes, M., Banderas, A., Porro, J. and Morales, M. (2004), "Effect of laser shock processing on fatigue crack growth and fracture toughness of 6061-T6 aluminum alloy", Mater. Sci. Eng. A, 386, 291-295. https://doi.org/10.1016/j.msea.2004.07.025
  30. Sanchez-Santana, U., Rubio-Gonzalez, C., Gomez-Rosas, G., Ocaña, J.L, Molpeceres, C., Porro, J. and Morales, M. (2006), "Wear and friction of 6061-T6 aluminum alloy treated by laser shock processing", Wear, 260, 847-854. https://doi.org/10.1016/j.wear.2005.04.014
  31. Semari, Z., Aid, A., Benhamena, A., Amrouche, A., Benguediab, M., Sadok, A. and Benseddiq, N. (2013), "Effect of residual stresses induced by cold expansion on the crack growth in 6082 aluminum alloy", Eng. Fract. Mech., 99, 159-168. https://doi.org/10.1016/j.engfracmech.2012.12.003
  32. Tsay, L.W., Young, M.C. and Chen, C. (2003), "Fatigue crack growth behavior of laser-processed 304 stainless steel in air and gaseous hydrogen", Corros. Sci., 45, 1985-1997. https://doi.org/10.1016/S0010-938X(03)00036-2
  33. Yang, J.M., Her, Y.C., Han, N. and Clauer, A. (2001), "Laser shock peening on fatigue behavior of 2024-T3 Al alloy with fastener holes and stopholes", Mater. Sci. Eng. A, 298, 296-299. https://doi.org/10.1016/S0921-5093(00)01277-6
  34. Zhang, X. and Wang, Z. (2003), "Fatigue life improvement in fatigue-aged fastener holes using the cold expansion technique", Int. J. Fatig., 25, 1249-1257. https://doi.org/10.1016/S0142-1123(03)00152-X

피인용 문헌

  1. Effect of laser shock processing on fatigue life of 2205 duplex stainless steel notched specimens vol.97, 2017, https://doi.org/10.1016/j.optlastec.2017.07.020
  2. Effect of laser shock peening on bending fatigue performance of AISI 9310 steel spur gear vol.94, 2017, https://doi.org/10.1016/j.optlastec.2017.03.017
  3. First-principles modeling of laser-matter interaction and plasma dynamics in nanosecond pulsed laser shock processing vol.123, pp.5, 2018, https://doi.org/10.1063/1.5021894
  4. Influence of laser peening on fatigue crack initiation of notched aluminum plates vol.62, pp.6, 2017, https://doi.org/10.12989/sem.2017.62.6.739
  5. Dynamic numerical simulation of plastic deformation and residual stress in shot peening of aluminium alloy vol.63, pp.1, 2015, https://doi.org/10.12989/sem.2017.63.1.001
  6. Fatigue Life Behavior of Laser Shock Peened Duplex Stainless Steel with Different Samples Geometry vol.2019, pp.None, 2015, https://doi.org/10.1155/2019/8053248