DOI QR코드

DOI QR Code

Effect of the Combination of CI-988 and Morphine on Neuropathic Pain after Spinal Cord Injury in Rats

  • Kim, Junesun (Department of Physical Therapy, Korea University College of Health Science) ;
  • Kim, Youngkyung (Department of Physiology, Korea University College of Medicine) ;
  • Hahm, Suk-Chan (Department of Physical Therapy, Korea University College of Health Science) ;
  • Yoon, Young Wook (Department of Physiology, Korea University College of Medicine)
  • 투고 : 2014.11.05
  • 심사 : 2015.01.03
  • 발행 : 2015.03.30

초록

Cholecystokinin is known to be involved in the modulation of nociception and to reduce the efficacy of morphine analgesia. This study investigated the effects of intrathecal administration of morphine and the cholecystokinin type B antagonist CI-988 on below-level neuropathic pain after spinal cord injury in rats. We also examined the interaction of morphine and CI-988 in the antinociceptive effect. Both morphine and CI-988 given individually increased the paw withdrawal threshold to mechanical stimulation in a dose-dependent manner. The combination of ineffective doses of intrathecally administered CI-988 and morphine produced significant analgesic effects and the combination of effective doses resulted in analgesic effects that were greater than the sum of the individual effects of each drug. Thus, morphine showed a synergistic interaction with CI-988 for analgesia of central neuropathic pain.

키워드

참고문헌

  1. Siddall PJ, Molloy AR, Walker S, Mather LE, Rutkowski SB, Cousins MJ. The efficacy of intrathecal morphine and clonidine in the treatment of pain after spinal cord injury. Anesth Analg. 2000;91:1493-1498. https://doi.org/10.1097/00000539-200012000-00037
  2. Hulsebosch CE, Hains BC, Crown ED, Carlton SM. Mechanisms of chronic central neuropathic pain after spinal cord injury. Brain Res Rev. 2009;60:202-213. https://doi.org/10.1016/j.brainresrev.2008.12.010
  3. Portenoy RK, Foley KM, Inturrisi CE. The nature of opioid responsiveness and its implications for neuropathic pain: new hypotheses derived from studies of opioid infusions. Pain. 1990;43:273-286. https://doi.org/10.1016/0304-3959(90)90025-9
  4. Finnerup NB, Sindrup SH, Jensen TS. The evidence for pharmacological treatment of neuropathic pain. Pain. 2010; 150:573-581. https://doi.org/10.1016/j.pain.2010.06.019
  5. Rowbotham MC, Hansson PT, Fields HL, Hill RG, Marchettini P. Efficacy of opioids. In: Hansson PT, editor. Neuropathic pain: Pathophysiology and treatment. Seattle: ISAP Press; 2001. p.203-213.
  6. Brewer KL, McMillan D, Nolan T, Shum K. Cortical changes in cholecystokinin mRNA are related to spontaneous pain behaviors following excitotoxic spinal cord injury in the rat. Brain Res Mol Brain Res. 2003;118:171-174. https://doi.org/10.1016/j.molbrainres.2003.08.006
  7. Xu XJ, Puke MJ, Verge VM, Wiesenfeld-Hallin Z, Hughes J, Hokfelt T. Up-regulation of cholecystokinin in primary sensory neurons is associated with morphine insensitivity in experimental neuropathic pain in the rat. Neurosci Lett. 1993;152: 129-132. https://doi.org/10.1016/0304-3940(93)90500-K
  8. Kim J, Kim JH, Kim Y, Cho HY, Hong SK, Yoon YW. Role of spinal cholecystokinin in neuropathic pain after spinal cord hemisection in rats. Neurosci Lett. 2009;462:303-307. https://doi.org/10.1016/j.neulet.2009.07.042
  9. Xu XJ, Hao JX, Seiger A, Hughes J, Hokfelt T, Wiesenfeld-Hallin Z. Chronic pain-related behaviors in spinally injured rats: evidence for functional alterations of the endogenous cholecystokinin and opioid systems. Pain. 1994;56:271-277. https://doi.org/10.1016/0304-3959(94)90165-1
  10. Coudore-Civiale MA, Courteix C, Fialip J, Boucher M, Eschalier A. Spinal effect of the cholecystokinin-B receptor antagonist CI-988 on hyperalgesia, allodynia and morphineinduced analgesia in diabetic and mononeuropathic rats. Pain. 2000;88:15-22. https://doi.org/10.1016/S0304-3959(00)00304-3
  11. Torres-Lopez JE, Juarez-Rojop IE, Granados-Soto V, Diaz-Zagoya JC, Flores-Murrieta FJ, Ortiz-Lopez JU, Cruz-Vera J. Peripheral participation of cholecystokinin in the morphineinduced peripheral antinociceptive effect in non-diabetic and diabetic rats. Neuropharmacology. 2007;52:788-795. https://doi.org/10.1016/j.neuropharm.2006.09.015
  12. Idanpaan-Heikkila JJ, Perrot S, Guilbaud G, Kayser V. In mononeuropathic rats, the enhancement of morphine antinociception by L-365,260, a selective CCK(B) receptor antagonist, depends on the dose of systemic morphine and stimulus characteristics. Eur J Pharmacol. 1997;325:155-164. https://doi.org/10.1016/S0014-2999(97)00123-4
  13. Agnes RS, Ying J, Kover KE, Lee YS, Davis P, Ma SW, Badghisi H, Porreca F, Lai J, Hruby VJ. Structure-activity relationships of bifunctional cyclic disulfide peptides based on overlapping pharmacophores at opioid and cholecystokinin receptors. Peptides. 2008;29:1413-1423. https://doi.org/10.1016/j.peptides.2008.03.022
  14. Dixon WJ. Efficient analysis of experimental observations. Annu Rev Pharmacol Toxicol. 1980;20:441-462. https://doi.org/10.1146/annurev.pa.20.040180.002301
  15. Gale K, Kerasidis H, Wrathall JR. Spinal cord contusion in the rat: behavioral analysis of functional neurologic impairment. Exp Neurol. 1985;88:123-134. https://doi.org/10.1016/0014-4886(85)90118-9
  16. Kim J, Jung JI, Na HS, Hong SK, Yoon YW. Effects of morphine on mechanical allodynia in a rat model of central neuropathic pain. Neuroreport. 2003;14:1017-1020. https://doi.org/10.1097/01.wnr.0000070190.28954.ec
  17. Tallarida RJ. Drug synergism: its detection and applications. J Pharmacol Exp Ther. 2001;298:865-872.
  18. Tallarida RJ, Stone DJ Jr, Raffa RB. Efficient designs for studying synergistic drug combinations. Life Sci. 1997;61:PL 417-425.
  19. Kim J, Yoon YW, Hong SK, Na HS. Cold and mechanical allodynia in both hindpaws and tail following thoracic spinal cord hemisection in rats: time courses and their correlates. Neurosci Lett. 2003;343:200-204. https://doi.org/10.1016/S0304-3940(03)00377-X
  20. Kohno T, Ji RR, Ito N, Allchorne AJ, Befort K, Karchewski LA, Woolf CJ. Peripheral axonal injury results in reduced mu opioid receptor pre- and post-synaptic action in the spinal cord. Pain. 2005;117:77-87. https://doi.org/10.1016/j.pain.2005.05.035
  21. Hebb AL, Poulin JF, Roach SP, Zacharko RM, Drolet G. Cholecystokinin and endogenous opioid peptides: interactive influence on pain, cognition, and emotion. Prog Neuropsychopharmacol Biol Psychiatry. 2005;29:1225-1238. https://doi.org/10.1016/j.pnpbp.2005.08.008
  22. Wu HE, Schwasinger ET, Hong JS, Tseng LF. Pretreatment with antiserum against dynorphin, substance P, or cholecystokinin enhances the morphine-produced anti-allodynia in the sciatic nerve ligated mice. Neurosci Lett. 2005;386:46-51. https://doi.org/10.1016/j.neulet.2005.05.052
  23. Xu XJ, Alster P, Wu WP, Hao JX, Wiesenfeld-Hallin Z. Increased level of cholecystokinin in cerebrospinal fluid is associated with chronic pain-like behavior in spinally injured rats. Peptides. 2001;22:1305-1308. https://doi.org/10.1016/S0196-9781(01)00456-9
  24. Wiesenfeld-Hallin Z, Xu XJ. The role of cholecystokinin in nociception, neuropathic pain and opiate tolerance. Regul Pept. 1996;65:23-28. https://doi.org/10.1016/0167-0115(96)00068-7
  25. Kovelowski CJ, Ossipov MH, Sun H, Lai J, Malan TP, Porreca F. Supraspinal cholecystokinin may drive tonic descending facilitation mechanisms to maintain neuropathic pain in the rat. Pain. 2000;87:265-273. https://doi.org/10.1016/S0304-3959(00)00290-6
  26. Verge VM, Wiesenfeld-Hallin Z, Hokfelt T. Cholecystokinin in mammalian primary sensory neurons and spinal cord: in situ hybridization studies in rat and monkey. Eur J Neurosci. 1993;5:240-250. https://doi.org/10.1111/j.1460-9568.1993.tb00490.x
  27. Cesselin F. Opioid and anti-opioid peptides. Fundam Clin Pharmacol. 1995;9:409-433. https://doi.org/10.1111/j.1472-8206.1995.tb00517.x
  28. Mollereau C, Roumy M, Zajac JM. Opioid-modulating peptides: mechanisms of action. Curr Top Med Chem. 2005;5:341-355. https://doi.org/10.2174/1568026053544515
  29. Zhou Y, Sun YH, Zhang ZW, Han JS. Increased release of immunoreactive cholecystokinin octapeptide by morphine and potentiation of mu-opioid analgesia by CCKB receptor antagonist L-365,260 in rat spinal cord. Eur J Pharmacol. 1993; 234:147-154. https://doi.org/10.1016/0014-2999(93)90948-H
  30. Stanfa LC, Dickenson AH. Cholecystokinin as a factor in the enhanced potency of spinal morphine following carrageenin inflammation. Br J Pharmacol. 1993;108:967-973. https://doi.org/10.1111/j.1476-5381.1993.tb13493.x
  31. Chaparro LE, Wiffen PJ, Moore RA, Gilron I. Combination pharmacotherapy for the treatment of neuropathic pain in adults. Cochrane Database Syst Rev. 2012;7:CD008943.
  32. Hanlon KE, Herman DS, Agnes RS, Largent-Milnes TM, Kumarasinghe IR, Ma SW, Guo W, Lee YS, Ossipov MH, Hruby VJ, Lai J, Porreca F, Vanderah TW. Novel peptide ligands with dual acting pharmacophores designed for the pathophysiology of neuropathic pain. Brain Res. 2011;1395:1-11. https://doi.org/10.1016/j.brainres.2011.04.024
  33. McCleane G. The cholecystokinin antagonist proglumide has an analgesic effect when used alone in human neuropathic pain: A case report. Pain Clinic. 2003;15:71-73. https://doi.org/10.1163/156856903321196537
  34. McCleane GJ. The cholecystokinin antagonist proglumide enhances the analgesic efficacy of morphine in humans with chronic benign pain. Anesth Analg. 1998;87:1117-1120.
  35. McCleane GJ. A randomised, double blind, placebo controlled crossover study of the cholecystokinin 2 antagonist L-365,260 as an adjunct to strong opioids in chronic human neuropathic pain. Neurosci Lett. 2003;338:151-154. https://doi.org/10.1016/S0304-3940(02)01388-5