DOI QR코드

DOI QR Code

Cloning and Iron Transportation of Nucleotide Binding Domain of Cryptosporidium andersoni ATP-Binding Cassette (CaABC) Gene

  • Wang, Ju-Hua (College of Animal Science and Technology, Anhui Agriculture University) ;
  • Xue, Xiu-Heng (College of Tea & Food Technology, Anhui Agriculture University) ;
  • Zhou, Jie (College of Animal Science and Technology, Anhui Agriculture University) ;
  • Fan, Cai-Yun (College of Animal Science and Technology, Anhui Agriculture University) ;
  • Xie, Qian-Qian (College of Animal Science and Technology, Anhui Agriculture University) ;
  • Wang, Pan (College of Animal Science and Technology, Anhui Agriculture University)
  • Received : 2014.12.24
  • Accepted : 2015.04.10
  • Published : 2015.06.30

Abstract

Cryptosporidium andersoni ATP-binding cassette (CaABC) is an important membrane protein involved in substrate transport across the membrane. In this research, the nucleotide binding domain (NBD) of CaABC gene was amplified by PCR, and the eukaryotic expression vector of pEGFP-C1-CaNBD was reconstructed. Then, the recombinant plasmid of pEGFP-C1-CaNBD was transformed into the mouse intestinal epithelial cells (IECs) to study the iron transportation function of CaABC. The results indicated that NBD region of CaABC gene can significantly elevate the transport efficiency of $Ca^{2+}$, $Mg^{2+}$, $K^+$, and $HCO_3{^-}$ in IECs (P<0.05). The significance of this study is to find the ATPase inhibitors for NBD region of CaABC gene and to inhibit ATP binding and nutrient transport of CaABC transporter. Thus, C. andersoni will be killed by inhibition of nutrient uptake. This will open up a new way for treatment of cryptosporidiosis.

Keywords

References

  1. Xiang Y, Yang FK, Li YH, Ji H, Shu J, Zhang WZ, Liu AQ. Molecular identification of Cryptosporidium ryanae isolate from dairy cows in Harbin. Chinese J Zoon 2010; 26: 144-146.
  2. Zhu M, Zhang SY, He YY, Pan CE, Wei MX. An animal model for Cryptosporidium parvum in mice. Chinese J Parasit Dis Control 2003; 16: 13-15.
  3. Hijjawi NS, Meloni BP, Ryan UM, Olson ME, Thompson RC. Successful in vitro cultivation of Cryptosporidium andersoni: evidence for the existence of novel extracellular stages in the life cycle and implications for the classification of Cryptosporidium. Int J Parasitol 2002; 32: 1719-1726. https://doi.org/10.1016/S0020-7519(02)00199-6
  4. Wen PC, Tajkhorshid E. Conformational coupling of the nucleotide-binding and the transmembrane domains in ABC transporters. Biophys J 2011; 101: 680-690. https://doi.org/10.1016/j.bpj.2011.06.031
  5. LeChevallier MW, Di Giovanni GD, Clancy JL, Bukhari Z, Bukhari S, Rosen JS, Sobrinho J, Frey MM. Comparison of method 1623 and cell culture-PCR for detection of Cryptosporidium spp. in source waters. Appl Environ Microbiol 2003; 69: 971-979.
  6. Elwin K, Hadfield SJ, Robinson G, Crouch ND, Chalmers RM. Cryptosporidium viatorum n. sp. (Apicomplexa: Cryptosporidiidae) among travellers returning to Great Britain from the Indian subcontinent, 2007-2011. Int J Parasitol 2012; 42: 675-682. https://doi.org/10.1016/j.ijpara.2012.04.016
  7. Perkins ME, Volkman S, Wirth DF, Le Blancq SM. Characterization of an ATP-binding cassette transporter in Cryptosporidium parvum. Mol Biochem Parasitol 1997; 87: 117-122. https://doi.org/10.1016/S0166-6851(97)00053-4
  8. Perkins ME, Riojas YA, Wu TW, Le Blancq SM. CpABC, a Cryptosporidium parvum ATP-binding cassette protein at the host-parasite boundary in intracellular stages. Proc Natl Acad Sci USA 1999; 96: 5734-5739. https://doi.org/10.1073/pnas.96.10.5734
  9. Bonafonte MT, Romagnoli PA, McNair N, Shaw AP, Scanlon M, Leitch GJ, Mead JR. Cryptosporidium parvum: effect of multi-drug reversing agents on the expression and function of ATP-binding cassette transporters. Exp Parasitol 2004; 106: 126-134. https://doi.org/10.1016/j.exppara.2004.03.012
  10. Teodori E, Dei S, Martelli C, Scapecchi S, Gualtieri F. The functions and structure of ABC transporters: implications for the design of new inhibitors of Pgp and MRP1 to control multidrug resistance (MDR). Curr Drug Targets 2006; 7: 893-909. https://doi.org/10.2174/138945006777709520
  11. Benitez AJ, McNair N, Mead J. Modulation of gene expression of three Cryptosporidium parvum ATP-binding cassette transporters in response to drug treatment. Parasitol Res 2007; 101: 1611-1616. https://doi.org/10.1007/s00436-007-0701-x
  12. Benitez AJ, Arrowood MJ, Mead JR. Functional characterization of the nucleotide binding domain of the Cryptosporidium parvum CpABC4 transporter: an iron-sulfur cluster transporter homolog. Mol Biochem Parasitol 2009; 165: 103-110. https://doi.org/10.1016/j.molbiopara.2009.01.010
  13. Sun T, Liu W, Wang JH, Xue XH, Zhao CC, Li PY. Isolation and identification of cow-origin Cryptosporidium isolates in Hefei. Chinese J Parasitol Parasit Dis 2011; 29: 447-452.
  14. Higgins CF. ABC transporters: physiology, structure and mechanism-an overview. Res Microbiol 2001; 152: 205-210. https://doi.org/10.1016/S0923-2508(01)01193-7
  15. Schneider E, Hunke SA. ATP-binding-cassette (ABC) transport systems: functional and structural aspects of the ATP-hydrolyzing subunits/domains. FEMS Microbiol Rev 1998; 22: 1-20. https://doi.org/10.1111/j.1574-6976.1998.tb00358.x
  16. Walker JE, Saraste M, Runswick MJ, Gay NJ. Distantly related sequences in the alpha- and beta-subunits of ATP synthase, myosin, kinases and other ATP-requiring enzymes and a common nucleotide binding fold. EMBO J 1982; 1: 945-951.
  17. Wang HB, Zhang ZY, Bao R, Chen YX. ABC transporter structure and transport mechanism of ATP-binding-cassette. Chem Life 2007; 2: 208-210.