DOI QR코드

DOI QR Code

아민화된 폴리페닐렌 옥사이드막에 의한 기체 투과 특성에 관한 연구

Gas Permeation Properties of Aminated Polyphenylene Oxide Membranes

  • 신도형 (한남대학교 대덕밸리캠퍼스 화공신소재공학과) ;
  • 임지원 (한남대학교 대덕밸리캠퍼스 화공신소재공학과)
  • Shin, Do Hyoung (Department of Advanced Materials and Chemical Engineering, Hannam University) ;
  • Rhim, Ji Won (Department of Advanced Materials and Chemical Engineering, Hannam University)
  • 투고 : 2015.12.02
  • 심사 : 2015.12.14
  • 발행 : 2015.12.31

초록

Trimethylamine과 chloromethyl ethyl ether를 사용하여 PPO를 기반으로 하는 APPO를 제조하여 특성평가를 진행하였다. 전기 물리적 특성을 알아보기 위해 8 wt%의 APPO chloroform 용액으로 APPO막을 제막하여 특성평가를 진행하였다. 접촉각은 $44.4^{\circ}$, 함수율은 37.9%의 결과값을 얻을 수 있었다. 전기적 특성인 이온교환용량과 이온전도도는 각각 2.3 meq/g, 0.027 S/cm로 측정되었다. 또 time-lag 장치를 이용하여 단일기체(질소, 산소, 메탄, 이산화탄소, 이산화황)에 대한 확산도 및 용해도를 알아보았다. 산성가스인 이산화탄소와 황산의 경우, 투과도는 각각 20.7, 511.5 barrer로 측정되었다. 선택도의 경우, 이산화탄소/메탄은 39.8, 이산화탄소/질소는 42.2, 이산화황/이산화탄소는 24.7로 측정되었다.

Aminated polyphenylene oxide (APPO) based on polyphenylene oxide (PPO) was synthesized using trimethylamine and chloromethyl ethyl ether. Then, the electro-physical properties of APPO membranes which were prepared from the 8 wt% APPO solution dissolved in chloroform were characterized. Contact angle was $44.4^{\circ}$, swelling degree was 37.9%. The typical electrical properties of ion exchange capacity and ion conductivity were 2.3 meq/g, 0.027 S/cm, respectively. And the single gas permeation experiments were performed by using the time-lag method for $N_2$, $O_2$, $CH_4$, $CO_2$, $SO_2$. For the acid gases of $CO_2$ and $SO_2$, their permeability were measured 20.7 and 511.5 barrers, respectively. In the case of selectivity, $CO_2/CH_4$, $CO_2/N_2$ and $SO_2/CO_2$ were measured 39.8, 42.2, 24.7, respectively.

키워드

참고문헌

  1. W. T. Ward and W. L. Robb, "Carbon dioxide-oxygen separation: Facilitated transport of carbon dioxide across a liquid film", Science, 156, 1481-1484 (1967). https://doi.org/10.1126/science.156.3781.1481
  2. C. Zhang, Z. Wang, Y. Cai, C. Yi, D. Yang, and S. Yuan, "Investigation of gas permeation behavior in facilitated transport membranes: Relationship between gas permeance and partial pressure", Chem. Eng. J., 225, 744-751 (2013). https://doi.org/10.1016/j.cej.2013.03.100
  3. K. Huang, X. M. Zhang, Y. X. Li, Y. T. Wu, and X. B. Hu, "Facilitated separation of $CO_2$ and $SO_2$ through supported liquid membranes using carboxylate-based ionic liquids", J. Membr. Sci., 471, 227-236 (2014). https://doi.org/10.1016/j.memsci.2014.08.022
  4. H. Matsuyama, A. Terada, T. Nakagawa, Y. Kiramura, and M. Teramoto, "Facilitated transport of $CO_2$ through polyethylenimine/poly(vinyl alcohol) blend membrane", J. Membr. Sci., 163, 221-227 (1999). https://doi.org/10.1016/S0376-7388(99)00183-0
  5. H. Matsuyama, M. Teramoto, and K. Iwai, "Development of a new functional cation-exchange membrane and its application to facilitated transport of $CO_2$", J. Membr. Sci., 93, 237-244 (1994). https://doi.org/10.1016/0376-7388(94)00082-4
  6. D. N. Richard, "Analysis of facilitated transport with fixed site carrier membranes", J. Membr. Sci., 50, 207-214 (1990). https://doi.org/10.1016/S0376-7388(00)80316-6
  7. D. N. Richard, "Facilitated transport mechanism in fixed site carrier membranes", J. Membr. Sci., 60, 297-306 (1991). https://doi.org/10.1016/S0376-7388(00)81541-0
  8. D. N. Richard, "Analysis of ion transport with fixed site carrier membranes", J. Membr. Sci., 56, 229-234 (1991). https://doi.org/10.1016/S0376-7388(00)80811-X
  9. L. H. Bao and M. C. Trachtenberg, "Facilitated transport of $CO_2$ across a liquid membrane: comparing enzyme, amine, and alkaline", J. Membr. Sci., 280, 330-334 (2006). https://doi.org/10.1016/j.memsci.2006.01.036
  10. L. Y. Deng, T. J. Kim, and M. B. Hagg, "Facilitated transport of $CO_2$ in novel PVAm/PVA blend membrane", J. Membr. Sci., 340, 154-163 (2009). https://doi.org/10.1016/j.memsci.2009.05.019
  11. E. D. Bates, R. D. Mayton, I. Ntai, and J. H. Davis, "$CO_2$ capture by a task-specific ionic liquid", J. Am. Chem. Soc., 124, 926-927 (2002). https://doi.org/10.1021/ja017593d
  12. J. M. Zhang, S. J. Zhang, K. Dong, Y. Q. Zhang, Y. Q. Shen, and X. M. Lv, "Supported absorption of $CO_2$ by tetrabutylphosphonium amino acid ionic liquids", Chem. Eur. J., 12, 4021-4026 (2006). https://doi.org/10.1002/chem.200501015
  13. B. E. Gurkan, J. C. de la Fuente, E. M. Mindrup, L. E. Ficke, B. F. Goodrich, E. A. Price, W. F. Schneider, and J. F. Brennecke, "Eqimolar $CO_2$ absorption by anion-functionalized ionic liquids", J. Am. Chem. Soc., 132, 2116-2117 (2010). https://doi.org/10.1021/ja909305t
  14. S. Hanioka, T. Maruyama, T. Sotani, M. Teramoto, H. Matsuyama, K. Nakashima, M. Hanaki, F. Kubota, and M. Goto, "$CO_2$ separation facilitated by task-specific ionic liquids using a supported liquid membrane", J. Membr. Sci., 314, 1-4 (2008). https://doi.org/10.1016/j.memsci.2008.01.029
  15. S. Kasahara, E. Kamio, T. Ishigami, and H. Matsuyama, "Amino acid ionic liquid-based facilitated transport membranes for $CO_2$ separation", Chem. Commun. (Camb.), 48, 6903-6905 (2012). https://doi.org/10.1039/c2cc17380h
  16. S. Kasahara, E. Kamio, T. Ishigami, and H. Matsuyama, "Effect of water in ionic liquids on $CO_2$ permeability in amino acid ionic liquid-based facilitated transport membranes", J. Membr. Sci., 415-416, 168-175 (2012). https://doi.org/10.1016/j.memsci.2012.04.049
  17. S. Kasahara, E. Kamio, and H. Matsuyama, "Improvements in the $CO_2$ permeation selectivities of amino acid ionic liquid-based facilitated transport membranes by controlling their gas absorption properties", J. Membr. Sci., 454, 155-162 (2014). https://doi.org/10.1016/j.memsci.2013.12.009
  18. S. B. Hamouda, Q. T. Nguyen, D. Langevin, and S. Roudesli, "Poly(vinylalcohol)/ poly(ethyleneglycol)/poly(ethyleneimine) blend membranes-structure and $CO_2$ facilitated transport", C. R. Acad. Sci. IIc: Chim., 13, 372-379 (2010).
  19. Y. Zhang, Z. Wang, and S. C. Wang, "Selective permeation of $CO_2$ through new facilitated transport membranes", Desalination, 145, 385 (2002). https://doi.org/10.1016/S0011-9164(02)00441-1
  20. G. J. Francisco, A. Chakma, and X. Feng, "Separation of carbon dioxide from nitrogen using diethanol-amine-impregnated poly(vinyl alcohol) membranes", Sep. Purif. Technol., 71, 205 (2010). https://doi.org/10.1016/j.seppur.2009.11.023
  21. J. Zou and W. S. Winston Ho, "$CO_2$-selective polymeric membranes containing amines in crosslinked poly(vinyl alcohol)", J. Membr. Sci., 286, 310 (2006). https://doi.org/10.1016/j.memsci.2006.10.013
  22. G. J. Francisco, A. Chakma, and X. Feng, "Membranes comprising of alkanolamines incorporated into poly(vinyl alcohol) matrix for $CO_2/N_2$ separation", J. Membr. Sci., 303, 54 (2007). https://doi.org/10.1016/j.memsci.2007.06.065
  23. S. Shishatskiy, J. R. Pauls, S. P. Nunes, and K. V. Peinemann, "Quaternary ammonium membrane materials for $CO_2$ separation", J. Membr. Sci., 359, 44 (2010). https://doi.org/10.1016/j.memsci.2009.09.006
  24. A. Brunetti, F. Scura, G. Barbieri, and E. Drioli, "Membrane technologies for $CO_2$ separation", J. Membr. Sci., 359, 115 (2010). https://doi.org/10.1016/j.memsci.2009.11.040
  25. D. Y. Oh and S. Y. Nam, "Developmental trend of Polyimide membranes for gas separation", Membr. J., 21, 307 (2011).
  26. J. M. Lee, M. G. Lee, D. J. Kim, and S. Y. Nam, "Characterization of gas permeation properties of Polyimide copolymer membranes for OBIGGS", Membr. J., 24, 325 (2014). https://doi.org/10.14579/MEMBRANE_JOURNAL.2014.24.4.325
  27. S. R. Park, B. J. Chang, H. S. Ahn, D. K. Kim, and J. H. Kim, "Preparation of PES hollow fiber membranes and their $O_2/N_2 $ permeation properties", Membr. J., 21, 62 (2011).
  28. R. T. Chern, F. R. Sheu, L. Jia, V. T. Stannet, and H. B. Hopfenberg, "Transport of Gases in unmodified and aryl-brominated 2,6-dimethyl-1,4-poly(phenylene oxide)", J. Membr. Sci., 35, 103-115 (1987). https://doi.org/10.1016/S0376-7388(00)80925-4
  29. H. Cong, X. Hu, M. Radosz, and Y. Shen, "Brominated poly(2,6-dimethyl-1,4-phenylene oxide) and its silica nanocomposite membranes for gas separation", Ind. Eng. Chem. Res., 46, 2567-2575 (1974).
  30. I. Cabasso, J. J. Grodzinski, and D. Vofsi, "Synthesis and characterization of polymers with pendant phosphonate groups", J. Appl. Polym. Sci., 18, 1969-1986 (1974). https://doi.org/10.1002/app.1974.070180706
  31. L. Verdet and J. K. Stille, "Poly(phenylene oxide) catalyst supports containing (cyclopentadiene)metal complexes", organometallics, 1, 380-384 (1982). https://doi.org/10.1021/om00062a024
  32. G. Perego, A. Roggero, R. Sisto, and C. Valentini, "Membranes for gas separation based on silylated polyphenylene oxide", J. Membr. Sci., 55, 325-331 (1991). https://doi.org/10.1016/S0376-7388(00)80586-4
  33. C. Bonfanti, L. Lanzini, A. Roggero, and R. Sisto, "Chemical modification of poly(2,6-dimethyl-1,4-phenylene oxide) by bromination-alkynylation", J. Polym. Sci. A. Polym. Chem., 32, 1361-1369 (1994). https://doi.org/10.1002/pola.1994.080320717
  34. S. Percec, "Chemical modification of poly(2,6-dimethyl-1,4-phenylene oxide) by Friedel-Craft's reactions", J. Appl. Polym. Sci., 33, 191-203 (1987). https://doi.org/10.1002/app.1987.070330116
  35. A. J. Chalk and A. S. Hay, "The direct metalation of poly(2,6-dimethyl-1,4-phenylene Ether), J. Polym. Sci. A. Polym. Chem., 7, 691-705 (1969). https://doi.org/10.1002/pol.1969.150070222
  36. A. Assogna, G. Perego, A. Roggero, R. Sisto, and C. Valentini, "Structure and gas permeability of silylated polyphenylene oxide", J, Membr. Sci., 71, 97-103 (1992). https://doi.org/10.1016/0376-7388(92)85009-8
  37. S. D. Hong, M. Y. Ha, and S. Balachandar, "Static and dynamic contact angles of water droplet on a solid surface using molecular dynamics simulation", J. Colloid Interface Sci., 339, 187-195 (2009). https://doi.org/10.1016/j.jcis.2009.07.048
  38. F. Wang, M. Hickner, Y. S. Kim, T. A. Zawodzinski, and J. E. Mcgrath, "Direct polymerization of sulfonated poly(arylene ether sulfone) random (statistical) copolymers: candidates for new proton exchange membranes", J. Membr. Sci., 197, 231-242 (2002). https://doi.org/10.1016/S0376-7388(01)00620-2
  39. J. H. Hong, D. Li, and H. Wang, "Weak-base anion exchange membranes by amination of chlorinated polypropylene with polyethyleneimine at low temperatures", J. Membr. Sci., 4, 318-441 (2008).
  40. C. H. Lee, H. B. Park, Y. M. Lee, and R. D. Lee, "Importance of proton conductivity measurement in polymer electrolyte membrane for fuel cell application", Ind. Eng. Chem. Res., 44, 7617-7626 (2005). https://doi.org/10.1021/ie0501172
  41. M. Soltanieh and W. N. Gill, "Review of reverse osmosis membranes and transport models", Chem. Eng. Commun., 12, 279-363 (1981). https://doi.org/10.1080/00986448108910843