DOI QR코드

DOI QR Code

Characterization of SPAES Composite Membrane Using Silane Based Inorganics

실란계 복합화 무기물을 이용한 SPAES 복합막의 특성평가

  • Woo, Chang Hwa (Division of Science and Engineering, Gyeongsang National University) ;
  • Kim, Deuk Ju (Department of Materials Engineering and Convergence Technology, Engineering Research Institute, Gyeongsang National University) ;
  • Nam, Sang Yong (Division of Science and Engineering, Gyeongsang National University)
  • 우창화 (경상대학교 나노신소재공학부) ;
  • 김득주 (경상대학교 나노신소재융합공학과) ;
  • 남상용 (경상대학교 나노신소재공학부)
  • Received : 2015.10.26
  • Accepted : 2015.10.27
  • Published : 2015.10.31

Abstract

In this study, we synthesize novel silane based inorganics for preparation of the polymer electrolyte membrane with high proton conductivity under high temperature condition and developed membranes are characterized. SPAES, hydrocarbon based polymer are synthesized and used as main polymeric material. We used sol-gel method to prepare inorganic material with high performance using silica, phosphate and zirconium. Three types of inorganics were prepared by control of the mole ration of each component. As a result of EDX analysis, the inorganic materials are well dispersed in the polymer membrane. The water uptake of the composite membrane is increased by introduction of the hydrophilic inorganic material in the membrane. When the content of the zirconium in the membrane is increased, the proton conductivity of the composite membrane shows the higher value than pure SPAES membrane at the high temperature. And the silica based inorganics effect to increase the proton conductivity under low temperature condition.

본 연구에서는 고온에서 우수한 전도성을 가지는 전해질막의 개발을 위하여 신규한 실란계 무기물을 합성하였으며, 이를 이용하여 제조된 분리막의 특성평가가 진행되었다. 탄화수소계열 고분자인 SPAES를 합성하여 고분자 물질로 사용하였으며, 높은 이온전도성을 가지는 무기물의 제조를 위하여 silica, phosphate, zironium계 물질을 졸겔법을 이용하여 복합화 시켰다. 각 조성의 몰비를 조절하여 세 가지 종류의 무기물을 제조하였으며 조성에 따른 물성변화를 관찰하였다. EDX 분석결과 제조된 무기물은 고분자 분리막 내에 고르게 분산이 되는 것을 확인하였다. 친수성을 가지는 무기물의 도입을 통하여 분리막 내에 이온을 전달할 수 있는 수분채널이 형성되어 함수율이 증가가 됨을 확인하였다. 또한 zirconium계 무기물의 함량이 높을수록 고온에서 전도도가 향상되는 결과를 확인하였으며 복합화된 실리카는 저온 가습조건에서 이온전도도가 향상되는 결과를 나타내었다.

Keywords

References

  1. L. Gubler and G. G. Scherer, "Trends for fuel cell membrane development", Desalination, 250, 1034 (2010). https://doi.org/10.1016/j.desal.2009.09.101
  2. D. J. Kim and S. Y. Nam, "Research trend of organic/ inorganic composite membrane for polymer electrolyte membrane fuel cell", Membr. J., 22, 155 (2012).
  3. D. J. Kim, H. Y. Hwang, and S. Y. Nam, "Characterization of hybrid membranes made from sulfonated poly(arylene ether sulfone) and vermiculite with high cation exchange capacity for DMFC applications", Membr. J., 21, 389 (2011).
  4. H. Huh, D. J. Kim, and S. Y. Nam, "Proton conductivity and methanol permeability of sulfonated poly(aryl ether sulfone)/modified graphene hybrid membranes", Membr. J., 21, 247 (2011).
  5. D. J. Kim, M. J. Jo, and S. Y. Nam, "A review of polymer-nanocomposite electrolyte membranes for fuel cell application", J. Ind. Eng. Chem., 21, 36 (2015). https://doi.org/10.1016/j.jiec.2014.04.030
  6. D. J Kim, M. K. Jeong, and S. Y. Nam, "Research trends in ion exchange membrane processes and practical applications", Appl. Chem. Eng., 26, 1 (2015). https://doi.org/10.14478/ace.2015.1008
  7. M. Gil, X. Ji, X. Li, H. Na, J. E. Hampsey, and Y. Lu, "Direct synthesis of sulfonated aromatic poly (ether ether ketone) proton exchange membranes for fuel cell applications", J. Membr. Sci., 234, 75 (2004). https://doi.org/10.1016/j.memsci.2003.12.021
  8. S. M. J. Zaidi, S. D. Mikhailenko, G. P. Robertson, M. D. Guiver, and S. Kaliaguine, "Proton conducting composite membranes from polyether ether ketone and heteropolyacids for fuel cell applications", J. Membr. Sci., 173, 17 (2000). https://doi.org/10.1016/S0376-7388(00)00345-8
  9. A. H. N. Rao, R. L. Thankamony, H.-J. Kim, S. Nam, and T.-H. Kim, "Imidazolium-functionalized poly (arylene ether sulfone) block copolymer as an anion exchange membrane for alkaline fuel cell", Polymer, 54, 111 (2013). https://doi.org/10.1016/j.polymer.2012.11.023
  10. B. Bae, T. Hoshi, K. Miyatake, and M. Watanabe, "Sulfonated block poly (arylene ether sulfone) membranes for fuel cell applications via oligomeric sulfonation", Macromolecules, 44, 3884 (2011). https://doi.org/10.1021/ma2000306
  11. M. Tohidian, S. R. Ghaffarian, S. E. Shakeri, E. Dashtimoghadam, and M. M. Hasani-Sadrabadi, "Organically modified montmorillonite and chitosan- phosphotungstic acid complex nanocomposites as high performance membranes for fuel cell applications", J. Solid State Electrochem., 17, 2123 (2013). https://doi.org/10.1007/s10008-013-2074-7
  12. H. Dogan, T. Y. Inan, M. Koral, and M. Kaya, "Organo-montmorillonites and sulfonated PEEK nanocomposite membranes for fuel cell applications", Appl. Clay Sci., 52, 285 (2011). https://doi.org/10.1016/j.clay.2011.03.007
  13. M. Linlin, A. K. Mishra, N. H. Kim, and J. H. Lee, "Poly (2, 5-benzimidazole)-silica nanocomposite membranes for high temperature proton exchange membrane fuel cell", J. Membr. Sci., 411, 91 (2012).
  14. J. A. Asensio, E. M. Sanchez, and P. Gomez- Romero, "Proton-conducting membranes based on benzimidazole polymers for high-temperature PEM fuel cells", Chem. Soc. Rev., 39, 3210 (2010). https://doi.org/10.1039/b922650h
  15. R. K. Nagarale, W. Shin, and P. K. Singh, "Progress in ionic organic-inorganic composite membranes for fuel cell applications", Polym. Chem., 1, 388 (2010). https://doi.org/10.1039/B9PY00235A
  16. C. Arbizzani, A. Donnadio, M. Pica, M. Sganappa, A. Varzi, M. Casciola, and M. Mastragostino, "Methanol permeability and performance of Nafion-zirconium phosphate composite membranes in active and passive direct methanol fuel cells", J. Power Sources, 195, 7751 (2010). https://doi.org/10.1016/j.jpowsour.2009.07.034
  17. K. A. Gross, C. S. Chai, G. S. K. Kannangara, B. Ben-Nissan, and L. Hanley, "Thin hydroxyapatite coatings via sol-gel synthesis", J. Mater. Sci. - Mater. M., 9, 839 (1998). https://doi.org/10.1023/A:1008948228880
  18. K. Onishi, S. Sewa, K. Asaka, N. Fujiwara, and K. Oguro, "Morphology of electrodes and bending response of the polymer electrolyte actuator", Electrochim. Acta, 46, 737 (2001). https://doi.org/10.1016/S0013-4686(00)00656-3
  19. A. A. Kornyshev, A. M. Kuznetsov, E. Spohr, and J. Ulstrup, "Kinetics of proton transport in water", J. Phys. Chem. B, 107, 3351 (2003).
  20. J. Ramirez-Salgado, "Study of basic biopolymer as proton membrane for fuel cell systems", Electrochim. Acta, 52, 3766 (2007). https://doi.org/10.1016/j.electacta.2006.10.051
  21. C. Yang, S. Srinivasan, A. S. Arico, P. Creti, V. Baglio, and V. Antonucci, "Composite Nafion/zirconium phosphate membranes for direct methanol fuel cell operation at high temperature", Electrochem. Solid-State Lett., 4, A31 (2001). https://doi.org/10.1149/1.1353157
  22. C. Yang, S. Srinivasan, A. B. Bocarsly, S. Tulyani, and J. B. Benziger, "A comparison of physical properties and fuel cell performance of Nafion and zirconium phosphate/Nafion composite membranes", J. Membr. Sci. 237, 145 (2004). https://doi.org/10.1016/j.memsci.2004.03.009