DOI QR코드

DOI QR Code

Hypochlorite Production by Using SPEEK/APSf and SPEEK/APEI Bipolar Membranes Modified by the Direct Fluorination

직접 불소화에 의해 표면 개질된 SPEEK/APSf, SPEEK/APEI 바이폴라막을 이용한 차아염소산나트륨 생성

  • Kim, Ka young (Department of Advanced Materials and Chemical Engineering, Hannam University) ;
  • Cheong, Seong Ihl (Department of Advanced Materials and Chemical Engineering, Hannam University) ;
  • Rhim, Ji Won (Department of Advanced Materials and Chemical Engineering, Hannam University)
  • 김가영 (한남대학교 대덕밸리캠퍼스 화공신소재공학과) ;
  • 정성일 (한남대학교 대덕밸리캠퍼스 화공신소재공학과) ;
  • 임지원 (한남대학교 대덕밸리캠퍼스 화공신소재공학과)
  • Received : 2015.10.06
  • Accepted : 2015.10.27
  • Published : 2015.10.31

Abstract

In this study, Polysulfone (PSf) and polyetherimide (PEI) as the anion exchange polymers were aminated in the different ratio whereas the polyether ether ketone (PEEK) as the cation exchange polymer was sulfonated. The bipolar membranes of SPEEK (sulfonated PEEK)/APSf (aminated PSf) and SPEEK/APEI (aminated PEI) were prepared by the double-casting method. The surfaces of bipolar membranes were fluorinated in accordance with the amination ratio and applied to produce the hypochlorite. As the amination increased, the hypochlorite concentration is also increased. Typically, for SPEEK/APSf 3 : 1 membrane, the produced hypochlorite concentration was 61.0 ppm and its durability was 220 min for the non-fluorinated membrane while for the fluorinated membrane, the concentration of 58.6 ppm and its durability lasted 570 min. Also for SPEEK/APEI 3 : 1 membrane, the hypochlorite concentrations of 60.1 ppm and 58.3 ppm for before- and after-fluorination, respectively were observed whereas the durability was remarkably developed from 150 min to 440 min. Therefore, the surface fluorination takes an important role for the development of the membrane durability.

본 연구에서는 Polysulfone (PSf), Polyetherimide (PEI)를 각각 비율을 달리하여 아민화하였고, Polyether ether ketone (PEEK)을 설폰화하였다. 합성한 두 이온교환고분자를 더블캐스팅방법으로 SPEEK (sulfonated PEEK)/APSf (aminated PSf) 및 SPEEK/APEI (aminated PEI) 바이폴라막을 제조하였다. 각각의 막 표면을 불소화하고, 아민화 비율에 따라 차아염소산나트륨발생량을 비교하였다. 아민화 비율이 증가할수록 차아염소산나트륨 발생 농도 또한 증가하였다. SPEEK/APSf 3 : 1 막의 경우 불소화 전의 차아염소산나트륨 농도와 총 운전시간은 61.0 ppm, 220 min이고, 불소화한 막의 경우 58.6 ppm, 570 min이다. 또한 SPEEK/APEI 3 : 1 막에서 역시 불소화 전후의 차아염소산나트륨 농도는 각각 60.1 ppm, 58.3 ppm이고, 총 운전시간은 150 min에서 440 min으로 내구성이 크게 향상되었다. 따라서 표면 불소화가 막의 내구성에 중요한 역할을 한다고 사료된다.

Keywords

References

  1. J. S. Kim, E. H. Cho, J. W. Rhim, C. J. Park, and S. G. Park, "Preparation of bi-polar membranes and their application to hypochlorite production", Membrane Water Treatment, 6, 27 (2015). https://doi.org/10.12989/mwt.2015.6.1.027
  2. Y. J. Kim, J. E. Jang, S. W. Lee, and S. J. Cha, "The effect of hypochlorous acid on the nitrogen removal in sea water", KORRA. J., 21, 43 (2013).
  3. S. J. Judd and J. A. Jeffrey, "Trihalomethane formation during swimming pool water disinfection using hypobromous and hypochlorous acids", Wat. Res., 29, 1203 (1995). https://doi.org/10.1016/0043-1354(94)00230-5
  4. F. Zaviska, P. Drogui, and G. Pablo, "Statistical optimization of active chlorine production from a synthetic saline effluent by electrolysis", Desalination, 296, 16 (2012). https://doi.org/10.1016/j.desal.2012.03.023
  5. J. H. Choi and S. H. Moon, "Concentration polarization phenomena in ion-exchange membranes", Membr. J., 12, 143 (2002).
  6. M. K. Hong, S. D. Han, H. J. Lee, and S. H. Moon, "A study on process performances of continuous electrodeionization with a bipolar membrane for water softening and electric regeneration", Membr. J., 17, 210 (2007).
  7. M. Y. Kim and K. J. Kim, "Preparation of anion exchange membranes of cross-linked poly((vinylbenzyl) trimethylammonium trimethylammonium", Appl. Chem. Eng., 21, 621 (2010).
  8. T. Xu, "Ion exchange membranes: State of their development and perspective", J. Membr. Sci., 263, 1 (2005). https://doi.org/10.1016/j.memsci.2005.05.002
  9. J. S. Koo, N. S. Kwak, and T. S. Hwang, "Synthesis and properties of nonfluoro aminated poly(vinylbenzyl chloride-co-ethylmethacrylate-co-styrene) anion exchange membranes for MCDI process", polymer(Korea), 36, 564 (2012).
  10. D. H. Kim, J. S. Park, and M. S. Kang, "Controlling water splitting characteristics of anion-exchange membranes by coating imidazolium polymer", Membr. J., 25, 152 (2015). https://doi.org/10.14579/MEMBRANE_JOURNAL.2015.25.2.152
  11. M. S. Kang, Y. J. Choi, and S. H. Moon, "Preparation and application of anion-exchange membrane having low water-splitting capability", Membr. J., 13, 54 (2003).
  12. B. K. Lee, J. S. Rho, and H. G. Kim, "Surface treatment of polymers using direct fluorination", Polymer science and technology, 13, 751 (2002).
  13. Y. S. Lee and B. K. Lee, "Surface properties of oxyfluorinated PAN-based carbon fibers", Carbon, 40, 2461 (2002). https://doi.org/10.1016/S0008-6223(02)00152-5
  14. A. Tressaud, E. Durand, and C. Labrugere, "Surface modification of several carbon-based materials: comparison between $CF_4$ rf plasma and direct $F_2$-gas fluorination routes", J. Fluorine Chem., 125, 1639 (2004). https://doi.org/10.1016/j.jfluchem.2004.09.022
  15. D. H. Kim, B. S. Lee, and J. W. Rhim, "Preparation and characterization of PVA/PSSA_MA electrolyte membranes containing silica compounds and surface fluorination for fuel cell application", Polymer(Korea), 34, 540 (2010).
  16. A. P. Kharitonov, R. Taege, G. Ferrier, V. V. Teplyakov, D. A. Syrtsova, and G. H. Koops, "Surface modification of several carbon-based materials: comparison between $CF_4$ rf plasma and direct $F_2$-gas fluorination routes", J. Fluorine Chem., 126, 251 (2005). https://doi.org/10.1016/j.jfluchem.2005.01.016
  17. K. T. Park, J. H. Chun, D. W. Choi, and S. H. Kim, "A characteriztion study on $Nafion/ZrO_2-TiO_2$ composite membranes for PEMFC operation at high temperature and low humidity", Trans. Korean Hydrog. New Energy Soc., 22, 60 (2011).
  18. F. Wang, M. Hickner, Y. S. Kim, T. A. Zawodzinski, and J. E. Mcgrath, "Direct polymerization of sulfonated poly(arylene ether sulfone) random (statistical)copolymers: candidates for new proton exchange membranes", J. Membr. Sci., 197, 231 (2002). https://doi.org/10.1016/S0376-7388(01)00620-2
  19. F. Karas, J. Hnat, M. Paidar, J. Schauer, and K. Bouzek, "Determination of the ion-exchange capacity of anion-selective membranes", Int. J. Hydrogen Energy, 39, 5054 (2014). https://doi.org/10.1016/j.ijhydene.2014.01.074
  20. M. Y. Kim, K. J. Kim, and H. Kang, "Preparation of anion exchange membranes of cross-linked poly ((vinylbenzyl)trimethylammonium chloride-2-hydroxyl methacrylate)/poly(vinyl alchol)", Appl. Chem. Eng., 21, 621 (2010).
  21. Y. Pan, Y. Huang, and B. Liao, "Synthesis and characterization of aminated Poly(2,6-dimethyl-1,4- phenylene oxide)", J. Appl. Polym. Sci., 61, 1111 (1996). https://doi.org/10.1002/(SICI)1097-4628(19960815)61:7<1111::AID-APP6>3.0.CO;2-P
  22. C. S. Kim, S. Y. Kang, J. W. Rhim, and S. G. Park, "Synthesis of aminated poly(ether imide) for the preparation of bi-polar membranes and their application to hypochlorite production through the surface direct fluorination", Polymer(Korea), 39, 338 (2015).
  23. D. H. Shin, N. Kim, and Y. T. Lee, "Modification to the polyamide TFC RO membranes for improvement of chlorine-resistance", J. Membr. Sci., 376, 302 (2011). https://doi.org/10.1016/j.memsci.2011.04.045
  24. J. W. Rhim, B. Lee, H. H. Park, and C. H. Seo, "Preparation and characterization of chlorine resistant thin film composite polyamide membranes via the adsorption of various hydrophilic polymers onto membrane surfaces", Macro. Res., 22, 361 (2014). https://doi.org/10.1007/s13233-014-2051-8
  25. A. P. Kharitonov, "Direct fluorination of polymers- From fundamental research to industrial applications", J. Org. Coatings, 61, 192 (2008). https://doi.org/10.1016/j.porgcoat.2007.09.027
  26. A. P. Kharitonov, "Practical applications of the direct fluorination of polymers", J. Fluorine Chem., 103, 123 (2000). https://doi.org/10.1016/S0022-1139(99)00312-7